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Electromagnetic Potentials



Electromagnetic Potentials

m Starting from the Maxwell equation: V - B = 0, we deduce that B can locally be
expressed as the curl of a vector potential A:

B=VxA.

m The second source-free Maxwell equation is:

m Substituting B =V x A and rearranging, we get:

10A
V x <E—|—8>:0.

c Ot
m Since the curl of a field vanishes, the field can be expressed as the gradient of a scalar:

1

E -+ 10A =-Vo,
c Ot

where ® is the scalar potential. The electric field E can be expressed:
E=-Vo— 1%
c Ot
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Gauge Transformations and Electromagnetic Potentials

m Potentials are not uniquely defined. They can be transformed without altering the
resulting fields E and B. For a scalar function A(x, t), the transformations are:
10N

A=A+VA ¢ =0--—.
c ot

m The primed potentials yield the same electric and magnetic fields:
E(A',¢') = E(A,9), B(A',9')=B(A, ).

m An electromagnetic field configuration can be imagined as an equivalence class of
potentials, all of which differ from each other by gauge transformations and with any
element of the class a valid representative.

m Implications of this equivalence:

m Different sets of potentials (A, ®) and (A’, ®") can produce identical fields (E, B), but may
not be gauge-equivalent. The Aharonov-Bohm effect demonstrates how potentials can have
physical significance, even when fields are identical.

m Consider the fields (E, B) that satisfy Maxwell's equations. Suppose, however, that there are
no potentials (A, ®) from which (E, B) arise as usual. We must then conclude that (E, B) ,
despite satisfying Maxwell's equations, are not valid fields.
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Schrodinger Equation with
Electromagnetic Potentials



Schrodinger Equation with Electromagnetic Potentials

To incorporate electromagnetic fields in the Schrodinger equation for a particle with charge g:
m Adding to the Hamiltonian a term q®(X, t)

m The canonical momentum operator p is replaced as (minimal coupling):

p—p— IAR ).
C

Here, A(X, t) is the vector potential, and ®(X, t) is the scalar potential.

m The basic commutation relations are not be changed:

[%i, pj] = ihdjj, P = —ihV (in coordinate space).
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Schrédinger Equation with Electromagnetic Potentials (cont.)

The Hamiltonian for minimal coupling becomes:

A= ( I t))2+ O(%, t)
- 2m p C ) q 9 M

In coordinate space, this is expressed as:

~ 1 (h 2
H=_— (.V — gA(x, t)> + qP(x, t).

2m \ i

The corresponding Schrodinger equation for the wave function W(x, t) is:

ov
2V _
! ot

1 (h q 2
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Gauge Invariance in the Schrodinger Equation

Here is the way we state the gauge invariance. For gauge-transformed potentials:

AN—AtrvVA o —o_ 10N

cot’
ial
v = 9% ) .,
exp < hc>

Substituting these transformations, the Schrodinger equation remains unchanged:

1 2
= (}?v - qA’) + qd/
2m \ i c

the wave function transforms as:

o’
SOV
"ot

v’

The transformation of the wave function can be expressed as:
ig\ ,
U(N) = exp e ) V' = U(A)W.

This ensures that the probability density p(x, t) = W*(x, t)W(x, t) is invariant under gauge
transformations.
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Gauge-Covariant Operators

In this theory, we aim to ensure that the result of measurements does not depend on the
choice of gauge. Not all Hermitian operators achieve this, so we consider a class of operators
called gauge-covariant operators, which yield gauge-invariant measurements.

Under a gauge transformation with parameter A(x, t), an operator O[®, A], written as O for
brevity, transforms into a new operator O given by:

Gauge transformation:  O[®,A] — O'[¢', A'].

Definition of Gauge-Covariant Operators: Physical observables are Hermitian operators O
that are gauge covariant—namely, they satisfy the condition:

O = U(N)OUT(N).
Or more explicitly:

O'[¢',A'] = UN)O[d, AJUTL(A).
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Gauge-Invariant Measurements

We now demonstrate that gauge-covariant observables yield gauge-invariant
measurements.
Suppose |V) is an eigenstate of a gauge-covariant operator O with eigenvalue \p:

O|V) = \o|V).
Under a gauge transformation, we find that:
O'|V) = UOUTTUV) = UO|V) = Ulp|V) = Ao|V'),

showing that a measurement with the gauge-transformed operator O’ on the
gauge-transformed state |W’) gives the same result.
Similarly, we verify that the expectation value of a gauge-covariant observable O is
gauge-invariant:

(W[O'W) = (W[ UL UOUTU) = (W[O]W).

This establishes that both eigenvalues and expectation values of gauge-covariant observables
remain unchanged under a gauge transformation, ensuring gauge invariance of physical
measurements.
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Heisenberg Picture

This picture incorporates the time dependence of states into the operators.

Given a Schrodinger operator Ag, the corresponding Heisenberg operator Ay(t) is defined
as:

An(t) = Ut (1)AsU(t),
where U(t) is the unitary time evolution operator, evolving states as [W(t)) = U(t)|W(0)).
Heisenberg operators satisfy the equations of motion:

P _ T (0), Au(e) + 2200

This equation is analogous to classical equations of motion. The additional term arises
when Ags has explicit time dependence.

If the Schrodinger Hamiltonian is:
Hs = H(&,p, A%, t), D(%, t)),
the Heisenberg Hamiltonian takes the form:
Ay = H(&n(t), Br(t), ARn(1), ), ®(Rn (1), 1)).
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Heisenberg Velocity Operator and Lorentz Force Law

m The Heisenberg equation of motion for Xy is given by:
dXp,

I [~
=+ [ A gui]
dt  h [ H) XH,
m Using the definition Ay = A(Xy, t), the commutator is computed as
([AA, Bl = A[A, B] + [A, B]A):

dx,:' =5 Z (PH - *AH> [(ﬁH - gAH> ,,ﬁH,i] .

J

m Simplifying with [Py j,Xp ] = —/hé,-j, we find:
dxy; 1 q
L= — (b - An) .
dt m (pH c M

m Combining with the previous result, we have the relation:

~ ~ q
mVy = pH — EAH.
m Quantum version of the Lorentz force law
diy

1
mW:qEH+%§(OHXBH*BHXOH)
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Magnetic Fields on a Torus
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Magnetic Fields on a Torus
m A two-dimensional torus T2 is defined by the space (x, y) with the identifications:
(X)y)N(X+LXay)7 (X,}/)N(Xy)/‘f‘Ly).

m The torus can be visualized as a rectangular region 0 < x < L, and 0 <y < L,, with

periodic boundary conditions.
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>

" X

g L, x
Figure: Left: A two-dimensional torus as a rectangular region with boundaries identified. Right: The
candidate gauge potential A,(x,y) = Byx takes different values on the left and right vertical

boundaries.
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Constant Magnetic Field on a Torus

m Consider a constant magnetic field By along the z-direction on the torus.
m Maxwell's equations for By:
V-B=0, VxB=0.

For point charges with charge g, the magnetic flux BoLL, must be quantized in
multiples of a flux quantum ®¢  fic/q.

With By in the z-direction, we have:
By = 0A, — 0, Ax.
m A simple solution for the vector potential:
Acx,y) =0, A, (x,y)= Box.
m Periodicity conditions for A,:
Ay(x,y) =Ay(x+ La,y), Aylx,y) =Ay(x,y +Ly).

The second condition is satisfied, but the first is not.
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Periodic Gauge Transformation

m Periodicity is not strictly necessary; gauge transformations allow A, on the left (x = 0)
and right (x = Ly) vertical boundary lines to differ by a gauge transformation.
Define Af(y) as A, on the right boundary x = Lj:

AR(y) = Ay(x = Ly, y) = Boly.
Define A)L/(Y) as A, deduced from x = 0:

A}e(y) =A/(x=0,y)=0.
m Gauge transformation ensures:

AJ(y) = Ay(y) + 9yA(x, y).

Solving for A(x, y):
A(X’y) = BOny + f(X))

m To maintain periodicity for Ay, set f(x) = 0, giving:
/\(Xay) = BOLXy'

This gauge parameter is not periodic in this circle.
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Periodic Gauge Transformation and Quantization

m The gauge transformations for the potentials and the wave function are written in terms
of the phase factor U(x, y):
.gN\
Ulx,y)=exp|i— | .
(x,y) = exp ( hc)

For the wave function, this is manifest as W/ = UWV. For the potentials:

0
A=A+VA=A-— %U*lvu,

¢/:¢—1(1\:¢+@U*1‘1U.
c Ot q ot

The gauge parameter A does not need to be periodic; instead, U(x, y) must satisfy
periodicity conditions. Using the previously determined A(x, y):

U(x,y) = exp (i%Bony> ;

The periodicity in y requires:

q
he
2rhe

U(X’y): U(Xay+Ly) — BOLXLy:27Tn, neEZ.

m This is the quantization condition: ByLiL, = s



Flux Quantization

m Define the flux of By through the torus as ®g = ByL«L,. The quantization condition can
be expressed as:

2mh A
(DB = T Cn = ¢on,
where we introduced the flux quantum do:
q/\>0 - 27TﬁC
q

m This is the smallest nonzero flux allowed. The magnetic field on the torus must have a
flux that is an integer multiple of ®g, which depends on the charge g of the particle.
m In superconductivity, Cooper pairs of electrons (g = 2e) define the magnetic flux

quantum ®q (without a hat):
2rh h
by = e _ 2o 2.067 x 107" gauss - cm?.
2e 2e

m The well-known value of ®¢ allows computation of &g for arbitrary charges q:

. (2
by = <e> .
q
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Landau Levels
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Particles in Uniform Magnetic Field: classical results

Consider a particle of mass m and charge g moving in a constant uniform magnetic field
in the z-direction.

m The charged particle undergoes circular motion in the (x, y)-plane with a constant
angular velocity, called the cyclotron frequency, w..

m Using the Lorentz force and centripetal acceleration, the relation is:
2
v v % B
g—B=m— - —:q—:wc.
c r r  mc

m Larger orbits correspond to higher velocity and greater kinetic energy for the particle.
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Particles in Uniform Magnetic Field: Quantum results

Consider the motion of a particle of mass m and charge g in a constant magnetic field B
along the z-direction.
The Landau gauge is given by:

A =(—By,0,0), ¢=0.
The Hamiltonian becomes:

~ 1 B \* 1
H=—1p — —p2.
5 <px +q Cy> + 5Py
Motion is assumed in the (x, y)-plane, ignoring p.
Energy eigenstates can be assumed to be p, eigenstates. The wavefunction takes the

form: .
TZJ(X,y) = w()/)elkxx7 Px = hks.
The Hamiltonian reduces to:

A 1
H, = —
hx 2m
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Landau Levels (cont.)
m The reduced Hamiltonian is identified as that of a harmonic oscillator in the y-direction:

~ 1 5 1 [(gB\? —hkec\?
”kx—zrn"ﬁzm(mc) YT )

m The frequency of the harmonic oscillator is the cyclotron frequency w. = %’i, and the
equilibrium position is shifted to:
hk,c

~5"
m The square of the length scale for a harmonic oscillator is given by:

h hc
2= =

Yo =

mwe  qB’
m In terms of the magnetic length ¢, the equilibrium position can be rewritten as:
Yo = —kel%.

m For a harmonic oscillator wavefunction 1(y) centered at yp > 0 with k, < 0, the energy
eigenstate 1)(x, y) is delocalized in the x-direction, with a width approximately /5.
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Landau Levels (cont.)

HV

Figure: The wave function 9(x,y) is supported in a band of width {5 centered at yo > 0 if k, < 0.
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Landau Levels (cont.)

m Using the n-th state ¢, of the harmonic oscillator for 1)(y), the wavefunction becomes:
D(x,y) = daly — yo)e™,

or in ket notation:
e
1) = e"X|n),.

m The energy E, i, of these states is:

1
En,kx = hwe¢ (2 + n> .

Comments:

Remarkably, the energy does not depend on k. Instead, k, determines the value of yp.
For a fixed n, there is an infinite degeneracy corresponding to the continuum of k, values.
These energy levels are known as Landau levels. For n = 0, this is the first Landau level,
for n =1, the second, and so on.

Our Landau-gauge solution can be thought of as the coherent superposition of infinitely
many circular orbits centered on the y = yy line, at all possible values of x.
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Landau Levels in a Finite Sample

Figure: A finite rectangular sample. The minimum of the harmonic oscillator is shifted by an amount
proportional to k.. With k, quantized, the degeneracy of the Landau levels is finite.

m For a finite rectangular sample with sides L, and L,, the quantization of k, arises from
the periodicity condition:
kelyx = 2mny, Ny € 7.
m To ensure that the states are confined within 0 < yg < L, with yo = —k«(%, the
quantization gives the lowest value of n, as —D, where D is a positive integer.
m Using the condition yp = L, we find:
2n(—D)

L, = —kely = Lizg, D=

LeL, ‘
27r€%3
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Degeneracy of Landau Levels

m The degeneracy D corresponds to the number of allowed n, values, which equals the

number of degenerate energy eigenstates in each Landau level.

m Using the relation for 2 = Z—E, and with the area A= L, L, we can write:

AB
D=—
by’
where ¢¢ = % is the flux quantum.
m This implies:
Pp
D=—
by’

where &g = BA is the magnetic flux through the sample.

Example: For a sample area of 1cm? under a 1 gauss magnetic field, the degeneracy is
approximately 2.4 million.
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The Pauli Equation



Pauli Equation

m The Schrodinger equation for a free particle is:

oV p?
=y
ih ot 2m

m For a spin one-half particle has two degrees of freedom, we expect the following equation:

X f’z . X1
ih— = — th = .
ot “omt W X X2

m Here, x is the Pauli spinor. The Hamiltonian takes the form:

AD p?
¥ P — | 2m 0
H %12X2 - < 0 IA)Q) .

2m
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m Using minimal coupling p — p — %A, the correct Hamiltonian for a particle with spin
coupled to electromagnetic fields is required.

m Rewriting the Hamiltonian using Pauli matrices, recall the identity:
(o-a)(o-b)=a-bly+io-(axb),
valid for arbitrary vector operators a and b.
m For a=b = p, and recognizing p x p = 0, we have:
(o-p)(o-p)= p*1axo.

m The Hamiltonian can now be written as:
1

fl=—(cp)(ob)
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Pauli Hamiltonian

With the replacement p — # = p — ZA(X, t), and including the scalar potential, we

define the Pauli Hamiltonian:
A 1 R R R
HPauIi = %(U : 77)(0- : ﬂ-) + qcb(xa t)'
Expanding the first term, the Hamiltonian becomes:
N 1 i o
Hpaui = =—# - fil+ —o - (& X &) + qP(X, t).

2m 2m

The commutator (# x 7) is nonzero:

A 9, .~ g .. q

(77, 7] = [Pi — AR P = A = —ih_€icB
Thus, in vector notation:

N N ST . q

(7'(' X 7T)k = €T = 56,']';( [7T,',7Tj] = —IhEBk.
Substituting back into Fllpau“, with g = —e and m = m,, we have:

N 1 /. e \2 eh N
Hpauli = 5— (P + *A> + o B —ed(x, 1),
2me c 2mecC

The second term gives the coupling of the electron spin to the magnetic field.
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The Dirac Equation



The Dirac Equation

m As discovered by Dirac, a relativistic description of the electron requires the use of
matrices and upgrading the Pauli spinor to a four-component spinor.

The analysis begins with the relationship between relativistic energy and momentum:

E?—?p?=mPct = E=+\/c2p?+ m2ct

This suggests a relativistic Hamiltonian H for a free particle could be written as:

H = +/c?p? + m2c*.

m The associated Schrodinger equation would then be:

/h— \Ve2p2 + m2ct V.
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Dirac Hamiltonian

m Dirac sought to avoid square roots in the Hamiltonian by rewriting the relativistic energy
as the square of a linear function of momentum:

c2p? + m?c* = (coupy + canpo + cazps + fmc?)>?.

m Here, a1, a2, a3, 5 are to be determined. The expression inside the parentheses is the
candidate for the energy operator:

Abirac = > aipi + Bmc.

1

m Expanding the square and equating coefficients yields the following conditions:
af =a3=a3=p4"=1,
ajaj + ojo; = {aj, a0} =0, i#}j,
@;f + Bai ={a;, 8} = 0.

m These anticommutator relations imply that «; and 8 cannot be numbers. They must

instead be matrices.
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Dirac Equation

m A solution for a; and 3 is achieved using 4 x 4 Hermitian matrices:

0 (0 @i 5o Lyo 0
e o; 0 ’ - 0 —]12><2 )

m The Dirac equation becomes:

lha\lf (Za, p,—|—6mc>

where V is a Dirac spinor, a four-component column vector composed of two

two—component vectors:
<X) ’ <X1> ' 7 <771> .
n X2 72
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Dirac Equation

m The spinors x and 7 correspond to the top and bottom components of the Dirac spinor.
At low energies, 7 is negligible, and the evolution of x follows the Pauli Hamiltonian.

m Coupling the Dirac equation to electromagnetic fields, with p — p + €A, the equation
becomes:

0
iy — [ca : (ﬁ + EA) + Bme? + V()| v,
ot c
where V(r) = —e®(r).
m The great advantage of the Dirac equation is that the relativistic corrections to the
hydrogen Bohr Hamiltonian can be derived systematically.

35 /35



	Electromagnetic Potentials
	Schrödinger Equation with Electromagnetic Potentials 
	Magnetic Fields on a Torus
	Landau Levels
	The Pauli Equation
	The Dirac Equation

