
Charged Particles in Electromagnetic Fields
Quantum Mechanics II

Ding-Yu Shao
dyshao@fudan.edu.cn

Department of physics, Fudan University

Contents:

1 Electromagnetic Potentials
2 Schrödinger Equation with Electromag-
netic Potentials

3 Magnetic Fields on a Torus

4 Landau Levels

5 The Pauli Equation

6 The Dirac Equation



Electromagnetic Potentials

2 / 35



Electromagnetic Potentials

Starting from the Maxwell equation: ∇ · B = 0, we deduce that B can locally be
expressed as the curl of a vector potential A:

B = ∇× A.

The second source-free Maxwell equation is:

∇× E = −1

c

∂B

∂t
.

Substituting B = ∇× A and rearranging, we get:

∇×
(
E+

1

c

∂A

∂t

)
= 0.

Since the curl of a field vanishes, the field can be expressed as the gradient of a scalar:

E+
1

c

∂A

∂t
= −∇Φ,

where Φ is the scalar potential. The electric field E can be expressed:

E = −∇Φ− 1

c

∂A

∂t
.
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Gauge Transformations and Electromagnetic Potentials

Potentials are not uniquely defined. They can be transformed without altering the
resulting fields E and B. For a scalar function Λ(x, t), the transformations are:

A′ = A+∇Λ, Φ′ = Φ− 1

c

∂Λ

∂t
.

The primed potentials yield the same electric and magnetic fields:

E(A′,Φ′) = E(A,Φ), B(A′,Φ′) = B(A,Φ).

An electromagnetic field configuration can be imagined as an equivalence class of
potentials, all of which differ from each other by gauge transformations and with any
element of the class a valid representative.
Implications of this equivalence:

Different sets of potentials (A,Φ) and (A′,Φ′) can produce identical fields (E,B), but may
not be gauge-equivalent. The Aharonov-Bohm effect demonstrates how potentials can have
physical significance, even when fields are identical.
Consider the fields (E,B) that satisfy Maxwell’s equations. Suppose, however, that there are
no potentials (A,Φ) from which (E,B) arise as usual. We must then conclude that (E,B) ,
despite satisfying Maxwell’s equations, are not valid fields.
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Schrödinger Equation with
Electromagnetic Potentials
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Schrödinger Equation with Electromagnetic Potentials

To incorporate electromagnetic fields in the Schrödinger equation for a particle with charge q:

Adding to the Hamiltonian a term qΦ(x̂, t)

The canonical momentum operator p̂ is replaced as (minimal coupling):

p̂ → p̂− q

c
A(x̂, t).

Here, A(x̂, t) is the vector potential, and Φ(x̂, t) is the scalar potential.

The basic commutation relations are not be changed:

[x̂i , p̂j ] = iℏδij , p̂ = −iℏ∇ (in coordinate space).
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Schrödinger Equation with Electromagnetic Potentials (cont.)

The Hamiltonian for minimal coupling becomes:

Ĥ =
1

2m

(
p̂− q

c
A(x̂, t)

)2
+ qΦ(x̂, t).

In coordinate space, this is expressed as:

Ĥ =
1

2m

(
ℏ
i
∇− q

c
A(x, t)

)2

+ qΦ(x, t).

The corresponding Schrödinger equation for the wave function Ψ(x, t) is:

iℏ
∂Ψ

∂t
=

[
1

2m

(
ℏ
i
∇− q

c
A(x, t)

)2

+ qΦ(x, t)

]
Ψ.
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Gauge Invariance in the Schrödinger Equation

Here is the way we state the gauge invariance. For gauge-transformed potentials:

A′ = A+∇Λ, Φ′ = Φ− 1

c

∂Λ

∂t
,

the wave function transforms as:

Ψ′ = exp

(
iqΛ

ℏc

)
Ψ.

Substituting these transformations, the Schrödinger equation remains unchanged:

iℏ
∂Ψ′

∂t
=

[
1

2m

(
ℏ
i
∇− q

c
A′
)2

+ qΦ′

]
Ψ′.

The transformation of the wave function can be expressed as:

U(Λ) = exp

(
iqΛ

ℏc

)
, Ψ′ = U(Λ)Ψ.

This ensures that the probability density ρ(x, t) = Ψ∗(x, t)Ψ(x, t) is invariant under gauge
transformations.
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Gauge-Covariant Operators

In this theory, we aim to ensure that the result of measurements does not depend on the
choice of gauge. Not all Hermitian operators achieve this, so we consider a class of operators
called gauge-covariant operators, which yield gauge-invariant measurements.
Under a gauge transformation with parameter Λ(x , t), an operator O[Φ,A], written as O for
brevity, transforms into a new operator O′ given by:

Gauge transformation: O[Φ,A] → O′[Φ′,A′].

Definition of Gauge-Covariant Operators: Physical observables are Hermitian operators O
that are gauge covariant—namely, they satisfy the condition:

O′ = U(Λ)OU−1(Λ).

Or more explicitly:
O′[Φ′,A′] = U(Λ)O[Φ,A]U−1(Λ).
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Gauge-Invariant Measurements

We now demonstrate that gauge-covariant observables yield gauge-invariant
measurements.
Suppose |Ψ⟩ is an eigenstate of a gauge-covariant operator O with eigenvalue λO:

O|Ψ⟩ = λO|Ψ⟩.

Under a gauge transformation, we find that:

O′|Ψ′⟩ = UOU−1U|Ψ⟩ = UO|Ψ⟩ = UλO|Ψ⟩ = λO|Ψ′⟩,

showing that a measurement with the gauge-transformed operator O′ on the
gauge-transformed state |Ψ′⟩ gives the same result.
Similarly, we verify that the expectation value of a gauge-covariant observable O is
gauge-invariant:

⟨Ψ′|O′|Ψ′⟩ = ⟨Ψ|U−1(UOU−1)U|Ψ⟩ = ⟨Ψ|O|Ψ⟩.

This establishes that both eigenvalues and expectation values of gauge-covariant observables
remain unchanged under a gauge transformation, ensuring gauge invariance of physical
measurements.
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Heisenberg Picture

This picture incorporates the time dependence of states into the operators.

Given a Schrödinger operator ÂS , the corresponding Heisenberg operator ÂH(t) is defined
as:

ÂH(t) = U†(t)ÂSU(t),

where U(t) is the unitary time evolution operator, evolving states as |Ψ(t)⟩ = U(t)|Ψ(0)⟩.
Heisenberg operators satisfy the equations of motion:

dÂH(t)

dt
=

i

ℏ
[ĤH(t), ÂH(t)] +

∂ÂH(t)

∂t
.

This equation is analogous to classical equations of motion. The additional term arises
when ÂS has explicit time dependence.

If the Schrödinger Hamiltonian is:

ĤS = H(x̂, p̂,A(x̂, t),Φ(x̂, t)),

the Heisenberg Hamiltonian takes the form:

ĤH = H(x̂H(t), p̂H(t),A(x̂H(t), t),Φ(x̂H(t), t)).
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Heisenberg Velocity Operator and Lorentz Force Law

The Heisenberg equation of motion for x̂H is given by:

d x̂H,i

dt
=

i

ℏ

[
ĤH , x̂H,i

]
.

Using the definition AH = A(x̂H , t), the commutator is computed as
([AA,B] = A[A,B] + [A,B]A):

d x̂H,i

dt
=

i

ℏ
∑
j

(
p̂H − q

c
AH

)
j

[(
p̂H − q

c
AH

)
j
, x̂H,i

]
.

Simplifying with [p̂H,j , x̂H,i ] = −iℏδij , we find:

d x̂H,i

dt
=

1

m

(
p̂H − q

c
AH

)
i
.

Combining with the previous result, we have the relation:

mv̂H = p̂H − q

c
AH .

Quantum version of the Lorentz force law

m
d v̂H
dt

= qEH +
q

c

1

2
(v̂H × BH − BH × v̂H)
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Magnetic Fields on a Torus

13 / 35



Magnetic Fields on a Torus

A two-dimensional torus T 2 is defined by the space (x , y) with the identifications:

(x , y) ∼ (x + Lx , y), (x , y) ∼ (x , y + Ly ).

The torus can be visualized as a rectangular region 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly , with
periodic boundary conditions.

Figure: Left: A two-dimensional torus as a rectangular region with boundaries identified. Right: The
candidate gauge potential Ay (x , y) = B0x takes different values on the left and right vertical
boundaries.
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Constant Magnetic Field on a Torus

Consider a constant magnetic field B0 along the z-direction on the torus.

Maxwell’s equations for B0:
∇ · B = 0, ∇× B = 0.

For point charges with charge q, the magnetic flux B0LxLy must be quantized in
multiples of a flux quantum Φ0 ∝ ℏc/q.
With B0 in the z-direction, we have:

B0 = ∂xAy − ∂yAx .

A simple solution for the vector potential:

Ax(x , y) = 0, Ay (x , y) = B0x .

Periodicity conditions for Ay :

Ay (x , y) = Ay (x + Lx , y), Ay (x , y) = Ay (x , y + Ly ).

The second condition is satisfied, but the first is not.
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Periodic Gauge Transformation

Periodicity is not strictly necessary; gauge transformations allow Ay on the left (x = 0)
and right (x = Lx) vertical boundary lines to differ by a gauge transformation.

Define AR
y (y) as Ay on the right boundary x = Lx :

AR
y (y) = Ay (x = Lx , y) = B0Lx .

Define AL
y (y) as Ay deduced from x = 0:

AL
y (y) = Ay (x = 0, y) = 0.

Gauge transformation ensures:

AR
y (y) = AL

y (y) + ∂yΛ(x , y).

Solving for Λ(x , y):
Λ(x , y) = B0Lxy + f (x),

To maintain periodicity for Ax , set f (x) = 0, giving:

Λ(x , y) = B0Lxy .

This gauge parameter is not periodic in this circle.

16 / 35



Periodic Gauge Transformation and Quantization

The gauge transformations for the potentials and the wave function are written in terms
of the phase factor U(x , y):

U(x , y) = exp

(
i
qΛ

ℏc

)
.

For the wave function, this is manifest as Ψ′ = UΨ. For the potentials:

A′ = A+∇Λ = A− iℏc
q

U−1∇U,

Φ′ = Φ− 1

c

∂Λ

∂t
= Φ+

iℏ
q
U−1∂U

∂t
.

The gauge parameter Λ does not need to be periodic; instead, U(x , y) must satisfy
periodicity conditions. Using the previously determined Λ(x , y):

U(x , y) = exp
(
i
q

ℏc
B0Lxy

)
,

The periodicity in y requires:

U(x , y) = U(x , y + Ly ) =⇒ q

ℏc
B0LxLy = 2πn, n ∈ Z.

This is the quantization condition: B0LxLy = 2πℏc
q n.
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Flux Quantization

Define the flux of B0 through the torus as ΦB ≡ B0LxLy . The quantization condition can
be expressed as:

ΦB =
2πℏc
q

n = Φ̂0n,

where we introduced the flux quantum Φ̂0:

Φ̂0 ≡
2πℏc
q

.

This is the smallest nonzero flux allowed. The magnetic field on the torus must have a
flux that is an integer multiple of Φ̂0, which depends on the charge q of the particle.
In superconductivity, Cooper pairs of electrons (q = 2e) define the magnetic flux
quantum Φ0 (without a hat):

Φ0 ≡
2πℏc
2e

=
hc

2e
≈ 2.067× 10−7 gauss · cm2.

The well-known value of Φ0 allows computation of Φ̂0 for arbitrary charges q:

Φ̂0 =

(
2e

q

)
Φ0.
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Landau Levels
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Particles in Uniform Magnetic Field: classical results

Consider a particle of mass m and charge q moving in a constant uniform magnetic field
in the z-direction.

The charged particle undergoes circular motion in the (x , y)-plane with a constant
angular velocity, called the cyclotron frequency, ωc .

Using the Lorentz force and centripetal acceleration, the relation is:

q
v

c
B = m

v2

r
→ v

r
=

qB

mc
= ωc .

Larger orbits correspond to higher velocity and greater kinetic energy for the particle.
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Particles in Uniform Magnetic Field: Quantum results

Consider the motion of a particle of mass m and charge q in a constant magnetic field B
along the z-direction.

The Landau gauge is given by:

A = (−By , 0, 0), Φ = 0.

The Hamiltonian becomes:

Ĥ =
1

2m

(
p̂x + q

B

c
y

)2

+
1

2m
p̂2y .

Motion is assumed in the (x , y)-plane, ignoring p̂z .

Energy eigenstates can be assumed to be p̂x eigenstates. The wavefunction takes the
form:

ψ(x , y) = ψ(y)e ikxx , px = ℏkx .
The Hamiltonian reduces to:

Ĥkx =
1

2m

[
p̂2y +

(
qB

c
y + ℏkx

)2
]
.
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Landau Levels (cont.)

The reduced Hamiltonian is identified as that of a harmonic oscillator in the y -direction:

Ĥkx =
1

2m
p̂2y +

1

2
m

(
qB

mc

)2(
y − −ℏkxc

qB

)2

.

The frequency of the harmonic oscillator is the cyclotron frequency ωc = qB
mc , and the

equilibrium position is shifted to:

y0 = −ℏkxc
qB

.

The square of the length scale for a harmonic oscillator is given by:

ℓ2B =
ℏ

mωc
=

ℏc
qB

.

In terms of the magnetic length ℓB , the equilibrium position can be rewritten as:

y0 = −kxℓ
2
B .

For a harmonic oscillator wavefunction ψ(y) centered at y0 > 0 with kx < 0, the energy
eigenstate ψ(x , y) is delocalized in the x-direction, with a width approximately ℓB .
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Landau Levels (cont.)

Figure: The wave function ψ(x , y) is supported in a band of width ℓB centered at y0 > 0 if kx < 0.
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Landau Levels (cont.)

Using the n-th state ϕn of the harmonic oscillator for ψ(y), the wavefunction becomes:

ψ(x , y) = ϕn(y − y0)e
ikxx ,

or in ket notation:
|ψ⟩ = e ikxx |n⟩y .

The energy En,kx of these states is:

En,kx = ℏωc

(
1

2
+ n

)
.

Comments:

1 Remarkably, the energy does not depend on kx . Instead, kx determines the value of y0.
For a fixed n, there is an infinite degeneracy corresponding to the continuum of kx values.
These energy levels are known as Landau levels. For n = 0, this is the first Landau level;
for n = 1, the second, and so on.

2 Our Landau-gauge solution can be thought of as the coherent superposition of infinitely
many circular orbits centered on the y = y0 line, at all possible values of x .
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Landau Levels in a Finite Sample

Figure: A finite rectangular sample. The minimum of the harmonic oscillator is shifted by an amount
proportional to kx . With kx quantized, the degeneracy of the Landau levels is finite.

For a finite rectangular sample with sides Lx and Ly , the quantization of kx arises from
the periodicity condition:

kxLx = 2πnx , nx ∈ Z.
To ensure that the states are confined within 0 ≤ y0 ≤ Ly , with y0 = −kxℓ

2
B , the

quantization gives the lowest value of nx as −D, where D is a positive integer.
Using the condition y0 = Ly , we find:

Ly = −kxℓ
2
B =

2π(−D)

Lx
ℓ2B , D =

LxLy
2πℓ2B

.
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Degeneracy of Landau Levels

The degeneracy D corresponds to the number of allowed nx values, which equals the
number of degenerate energy eigenstates in each Landau level.

Using the relation for ℓ2B = ℏc
qB , and with the area A = LxLy , we can write:

D =
AB

Φ0
,

where Φ0 =
2πℏc
q is the flux quantum.

This implies:

D =
ΦB

Φ0
,

where ΦB = BA is the magnetic flux through the sample.

Example: For a sample area of 1 cm2 under a 1 gauss magnetic field, the degeneracy is
approximately 2.4 million.
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The Pauli Equation
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Pauli Equation

The Schrödinger equation for a free particle is:

iℏ
∂Ψ

∂t
=

p̂2

2m
Ψ.

For a spin one-half particle has two degrees of freedom, we expect the following equation:

iℏ
∂χ

∂t
=

p̂2

2m
χ, with χ =

(
χ1

χ2

)
.

Here, χ is the Pauli spinor. The Hamiltonian takes the form:

Ĥ =
p̂2

2m
12×2 =

(
p̂2

2m 0

0 p̂2

2m

)
.

28 / 35



Using minimal coupling p̂ → p̂− q
cA, the correct Hamiltonian for a particle with spin

coupled to electromagnetic fields is required.

Rewriting the Hamiltonian using Pauli matrices, recall the identity:

(σ · a)(σ · b) = a · b 12×2 + iσ · (a× b),

valid for arbitrary vector operators a and b.

For a = b = p̂, and recognizing p̂× p̂ = 0, we have:

(σ · p̂)(σ · p̂) = p̂212×2.

The Hamiltonian can now be written as:

Ĥ =
1

2m
(σ · p̂)(σ · p̂).
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Pauli Hamiltonian

With the replacement p̂ → π̂ ≡ p̂− q
cA(x̂, t), and including the scalar potential, we

define the Pauli Hamiltonian:

ĤPauli =
1

2m
(σ · π̂)(σ · π̂) + qΦ(x̂, t).

Expanding the first term, the Hamiltonian becomes:

ĤPauli =
1

2m
π̂ · π̂I+ i

2m
σ · (π̂ × π̂) + qΦ(x̂, t).

The commutator (π̂ × π̂) is nonzero:

[π̂i , π̂j ] =
[
p̂i −

q

c
Ai , p̂j −

q

c
Aj

]
= −iℏ

q

c
ϵijkBk .

Thus, in vector notation:

(π̂ × π̂)k = ϵijk π̂i π̂j =
1

2
ϵijk [π̂i , π̂j ] = −iℏ

q

c
Bk .

Substituting back into ĤPauli, with q = −e and m = me , we have:

ĤPauli =
1

2me

(
p̂+

e

c
A
)2

+
eℏ

2mec
σ · B− eΦ(x̂, t),

The second term gives the coupling of the electron spin to the magnetic field.
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The Dirac Equation
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The Dirac Equation

As discovered by Dirac, a relativistic description of the electron requires the use of
matrices and upgrading the Pauli spinor to a four-component spinor.

The analysis begins with the relationship between relativistic energy and momentum:

E 2 − c2p2 = m2c4 ⇒ E =
√
c2p2 +m2c4.

This suggests a relativistic Hamiltonian Ĥ for a free particle could be written as:

Ĥ =
√
c2p̂2 +m2c4.

The associated Schrödinger equation would then be:

iℏ
∂Ψ

∂t
=
√

c2p̂2 +m2c4Ψ.
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Dirac Hamiltonian

Dirac sought to avoid square roots in the Hamiltonian by rewriting the relativistic energy
as the square of a linear function of momentum:

c2p̂2 +m2c4 = (cα1p̂1 + cα2p̂2 + cα3p̂3 + βmc2)2.

Here, α1, α2, α3, β are to be determined. The expression inside the parentheses is the
candidate for the energy operator:

ĤDirac =
∑
i

αi p̂i + βmc2.

Expanding the square and equating coefficients yields the following conditions:

α2
1 = α2

2 = α2
3 = β2 = 1,

αiαj + αjαi = {αi , αj} = 0, i ̸= j ,

αiβ + βαi = {αi , β} = 0.

These anticommutator relations imply that αi and β cannot be numbers. They must
instead be matrices.
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Dirac Equation

A solution for αi and β is achieved using 4× 4 Hermitian matrices:

αi =

(
0 σi
σi 0

)
, β =

(
I2×2 0
0 −I2×2

)
.

The Dirac equation becomes:

iℏ
∂

∂t
Ψ =

(∑
i

αi · p̂i + βmc2

)
Ψ,

where Ψ is a Dirac spinor, a four-component column vector composed of two
two-component vectors:

Ψ =

(
χ
η

)
, χ =

(
χ1

χ2

)
, η =

(
η1
η2

)
.
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Dirac Equation

The spinors χ and η correspond to the top and bottom components of the Dirac spinor.
At low energies, η is negligible, and the evolution of χ follows the Pauli Hamiltonian.

Coupling the Dirac equation to electromagnetic fields, with p̂ → p̂+ e
cA, the equation

becomes:

iℏ
∂

∂t
Ψ =

[
cα ·

(
p̂+

e

c
A
)
+ βmc2 + V (r)

]
Ψ,

where V (r) = −eΦ(r).

The great advantage of the Dirac equation is that the relativistic corrections to the
hydrogen Bohr Hamiltonian can be derived systematically.
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