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Ensembles and Mixed States

Intrinsic randomness of quantum mechanics: Unlike classical physics, where
probabilities arise solely from lack of knowledge, quantum mechanics involves intrinsic
randomness.

Consider a state |ψ⟩ ∈ V , with V an N-dimensional complex vector space.

Even with complete knowledge, measurements in quantum mechanics are probabilistic,
leading to the concept of an ensemble.

New Layer of Randomness:
Quantum mechanics adds a new layer of randomness;
This arises when describing a subsystem that is entangled with the rest of the system.

Density Matrix:
To account for this added randomness, we use a density matrix—an operator on the state
space encoding the quantum state and this extra randomness.

Pure vs. Mixed States:
A pure state is represented by |ψ⟩ ∈ V , a vector in the Hilbert space.
A mixed state accounts for additional randomness and cannot be described by a vector in V
alone.
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Stern-Gerlach Experiment

In the Stern-Gerlach experiment, a beam of silver atoms emerges from a hot oven, unpolarized,
with a spin state that is random. If we denote the spin state of an atom as |n⟩ with n a unit
vector, then atoms have vectors n pointing in random directions. Can we represent this
ensemble of atoms with a quantum state |ψ⟩ that captures this intrinsic randomness?
The answer is no. The general state is

|ψ⟩ = a+|+⟩+ a−|−⟩, a+, a− ∈ C,

where |±⟩ are the familiar Ŝz eigenstates. The state |ψ⟩, a pure state, is fixed by a+ and a−,
thus fixing the direction n of the spin state. Consequently, |ψ⟩ cannot describe states |n⟩ with
random n.
To simplify, assume an oven with 50% of the atoms polarized as |+⟩ and the other 50% as
|−⟩. This can be represented by pairs (pi , |ψi ⟩), where pi is the probability of a given atom
being in the quantum state |ψi ⟩:

Ez =

{(
1

2
, |+⟩

)
,

(
1

2
, |−⟩

)}
.

We denote Ez as the ensemble of z-polarized states, with each entry specifying a state and
its probability. This ensemble represents the mixed state of our system.
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General Ensemble for Quantum Systems

For a general ensemble E associated with a quantum system with state space V , we have a
list of states and probabilities:

E = {(p1, |ψ1⟩) , . . . , (pn, |ψn⟩)} , p1, . . . , pn > 0, p1 + · · ·+ pn = 1.

where n ≥ 1 is an integer representing the number of entries in the ensemble. This ensemble
describes a general mixed state.

The states |ψa⟩ ∈ V are normalized for all a = 1, . . . , n:

⟨ψa|ψa⟩ = 1.

The states |ψa⟩ are not required to be orthogonal to each other.

The integer n does not need to be related to the dimensionality dimV of the state space.

If n = 1, then p1 = 1, and the ensemble represents a pure state |ψ1⟩.
For n ≥ 2, we have a mixed state.

We can also have n > dimV since the states |ψa⟩ are not required to be linearly
independent.
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Expectation Value of a Hermitian Operator in an Ensemble

If Q̂ denotes a Hermitian operator we are to measure, its expectation value ⟨Q̂⟩E in the
ensemble E is given by

⟨Q̂⟩E =
n∑

a=1

pa⟨ψa|Q̂|ψa⟩ = p1⟨ψ1|Q̂|ψ1⟩+ · · ·+ pn⟨ψn|Q̂|ψn⟩.

This becomes clear if we imagine measuring Q̂ on the full ensemble E . The expectation value
⟨ψa|Q̂|ψa⟩ of Q̂ in the ath subensemble of states |ψa⟩ must be weighted by the probability pa
for states in E .
Now, consider an oven producing 50% of atoms in the state |x ; +⟩ and the other 50% in the
state |x ;−⟩. The ensemble Ex is:

Ex =

{(
1

2
, |x ; +⟩

)
,

(
1

2
, |x ;−⟩

)}
.

The expectation value of Q̂ in Ex is then

⟨Q̂⟩Ex =
1

2
⟨x ; +|Q̂|x ; +⟩+ 1

2
⟨x ;−|Q̂|x ;−⟩.
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Equivalence of Ensembles

An interesting result emerges if we rewrite ⟨Q̂⟩Ex by expressing |x ; +⟩ and |x ;−⟩ in terms of
|+⟩ and |−⟩:

⟨Q̂⟩Ex =
1

4
(⟨+|+ ⟨−|) Q̂ (|+⟩+ |−⟩) + 1

4
(⟨+| − ⟨−|) Q̂ (|−⟩+ |+⟩) .

The off-diagonal matrix elements cancel, yielding:

⟨Q̂⟩Ex =
1

2
⟨+|Q̂|+⟩+ 1

2
⟨−|Q̂|−⟩ = ⟨Q̂⟩Ez .

Thus, for any observable, the expectation values in the two ensembles Ez and Ex are identical,
making them physically indistinguishable.
Both ensembles represent the same mixed quantum state, despite the different entries. We are
led to a deeper understanding of representing a mixed quantum state using density matrices,
which we will explore further.
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Example: Unpolarized Ensemble

The oven in the Stern-Gerlach experiment produces unpolarized silver atoms. We
analyze the expectation value of Q̂ for the unpolarized ensemble and compare it with the
Ez ensemble.

In the unpolarized state, the values of n are uniformly distributed over the solid angle 4π.

The probability of n being within a solid angle dΩ is dΩ
4π .

The unpolarized ensemble is defined as:

Eunp =

{
dΩ

4π
, |n(θ, ϕ)⟩

}
, |n(θ, ϕ)⟩ = cos

θ

2
|+⟩+ e iϕ sin

θ

2
|−⟩.

The expectation value of any observable Q̂ is given by:

⟨Q̂⟩Eunp =

∫
dΩ

4π
⟨n(θ, ϕ)|Q̂|n(θ, ϕ)⟩.
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Example: Unpolarized Ensemble (cont.)

Integrating over ϕ eliminates off-diagonal elements of Q̂:

⟨Q̂⟩Eunp =
1

2
⟨+|Q̂|+⟩+ 1

2
⟨−|Q̂|−⟩.

This is the same result as for the Ez and Ex ensembles.

The unpolarized ensemble Eunp is equivalent to the ensembles where half the states are
polarized in one direction and the other half in the opposite direction.
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Entangled States and Ensembles

An even simpler example of quantum states described by ensembles is provided by a pair of
entangled states. Let Alice and Bob each have one of two entangled spin one-half states. The
entangled state |ψAB⟩ they share is the singlet state of total spin equal to zero:

|ψAB⟩ =
1√
2

(
|+⟩A|−⟩B − |−⟩A|+⟩B

)
.

If Alice measures the spin of her state along the z-direction:

If Alice gets |+⟩, then the state of Bob is |−⟩.
If Alice gets |−⟩, then the state of Bob is |+⟩.

If the result of Alice’s measurement is unknown, the state of Bob can be described by the
ensemble:

EBob =

{(1
2
, |+⟩

)
,
(1
2
, |−⟩

)}
.
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Entangled States and Ensembles (cont.)

If Alice measures along an arbitrary direction n:
Using rotational invariance, the singlet state can be rewritten as:

|ψAB⟩ =
1√
2

(
|n; +⟩A|n;−⟩B − |n;−⟩A|n; +⟩B

)
.

The ensemble for Bob’s state becomes:

EBob =

{(1
2
, |n; +⟩

)
,
(1
2
, |n;−⟩

)}
.

There is no pure state representing the quantum state of Alice’s particle when entangled
(example 22.2).
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Density Matrix
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Trace identity

Consider two states |u⟩, |w⟩ ∈ V . Define the operator |u⟩⟨w |. The trace of this operator
is given by:

tr(|u⟩⟨w |) = ⟨w |u⟩.
Proof:

Assume |i⟩ (i = 1, . . . ,N) form an orthonormal basis.
Using trM =

∑
i ⟨i |M|i⟩, for any operator M:

tr(|u⟩⟨w |) =
∑
i

⟨i |(|u⟩⟨w |)|i⟩ =
∑
i

⟨i |u⟩⟨w |i⟩.

Reordering the factors, we find:

tr(|u⟩⟨w |) =
∑
i

⟨w |i⟩⟨i |u⟩ = ⟨w |

(∑
i

|i⟩⟨i |

)
|u⟩.

Since
∑

i |i⟩⟨i | = I, this simplifies to:

tr(|u⟩⟨w |) = ⟨w |u⟩.

Observation: The result follows as a corollary of the generalized cyclicity property of the
trace, tr(AB) = tr(BA), which holds even when A and B are not square matrices.
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The Density Matrix

The density matrix ρ ∈ L(V ) is an operator on the Hilbert space V .

Consider a general ensemble:

E = {(p1, |ψ1⟩), . . . , (pn, |ψn⟩)},
n∑

a=1

pa = 1, pa > 0.

Expectation value of observable Q̂:

⟨Q̂⟩E =
n∑

a=1

pa⟨ψa|Q̂|ψa⟩.

Using the trace identity (tr(|u⟩⟨w |) = ⟨w | u⟩):

⟨Q̂⟩E =
n∑

a=1

patr(Q̂|ψa⟩⟨ψa|).
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The Density Matrix (cont.)

For a linear operator A and constant p:

tr(pA) = ptr(A).

Rewrite the expectation value:

⟨Q̂⟩E = tr
(
Q̂

n∑
a=1

pa|ψa⟩⟨ψa|
)
.

Define the density matrix:

ρE ≡
n∑

a=1

pa|ψa⟩⟨ψa|.

The density matrix contains all relevant information about the ensemble:

⟨Q̂⟩E = tr
(
Q̂ρE

)
E.g.

ρEz =
1

2
|+⟩⟨+|+ 1

2
|−⟩⟨−| = 1

2
I. ρEX

=
1

2
|x ; +⟩⟨x ; +|+ 1

2
|x ;−⟩⟨x ;−| = 1

2
I,
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Remarks on Density Matrix

The density matrix ρ is a Hermitian operator:

ρ† = ρ.

Hermitian property ensures real eigenvalues and diagonalizability.

ρ is positive semidefinite:

⟨v |ρ|v⟩ ≥ 0 for all vectors v .

Nonnegative eigenvalues derived from:

⟨v |ρ|v⟩ =
n∑

a=1

pa|⟨v |ψa⟩|2 ≥ 0.
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Remarks on Density Matrix (cont.)

Trace of the density matrix is 1:

tr(ρ) =
n∑

a=1

patr(|ψa⟩⟨ψa|) =
n∑

a=1

pa = 1.

Removes redundancies:

ρ =
N∑

i ,j=1

ρij |i⟩⟨j |,

where ρij are elements of a Hermitian N × N matrix. ρ is specified by N2 − 1 real
numbers (trace = 1).
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Remarks on Density Matrix (cont.)

Phases of ensemble states |ψa⟩ are irrelevant:

ρE = ρE ′ if |ψa⟩ → e iαa |ψa⟩.

Physicists often refer to ρ as the ”state” or ”state operator” of the system.
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Density Matrix for a Pure State

For a pure state |ψ⟩, the ensemble collapses to a single entry:

E = {(1, |ψ⟩)},

and the associated density matrix is:

ρ = |ψ⟩⟨ψ|.

Properties of the density matrix ρ for a pure state:

It is a rank-one orthogonal projector onto the subspace generated by |ψ⟩.
ρ is Hermitian and satisfies:

ρ2 = |ψ⟩⟨ψ||ψ⟩⟨ψ| = ρ.

Trace property:
tr ρ2 = tr ρ = 1.

Theorem: For any state,
tr ρ2 ≤ 1,

with the inequality saturated only for pure states.
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Purity of the Density Matrix

Key relations for traces of the density matrix:

tr ρ2 ≤ tr ρ = 1.

Purity ζ(ρ) of a density matrix:
ζ(ρ) ≡ tr ρ2.

ζ = 1: The state is pure.
ζ < 1: The state is mixed.

Maximally mixed state: The density matrix is proportional to the identity matrix I:

ρ̄ =
1

N
I,

where N is the dimension of the state space.
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Derivation of the Maximally Mixed State

Assume ρ = diag(p1, p2, . . . , pN), where pi ≥ 0 and
∑N

i=1 pi = 1.

Minimize
∑N

i=1 p
2
i under these constraints using the Lagrange multiplier λ:

L(p1, . . . , pN ;λ) =
N∑
i=1

p2i − λ

(
−1 +

N∑
i=1

pi

)
.

Stationary conditions:

∂L

∂pi
= 2pi − λ = 0, i = 1, . . . ,N;

∂L

∂λ
= 1−

N∑
i=1

pi = 0.

Solve for pi :

pi =
λ

2
, N

λ

2
= 1 =⇒ pi =

1

N
.

Resulting density matrix:

ρ̄ =
1

N
I.

21 / 57



Example: Density Matrix for Spin One-Half Pure States

The density matrix for a pure spin state |n⟩, pointing along the unit vector n, is expressed
as:

|n⟩⟨n| ≡ 1

2
a0I+

1

2

3∑
i=1

aiσi ,

where:

I is the identity matrix.
σi (i = 1, 2, 3) are the Pauli matrices.
a0 and ai are real constants.

Using the projector Pn = |n⟩⟨n|, the expression simplifies to:

|n⟩⟨n| ≡ 1

2

(
I+ n · σ

)
.
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Theorem: Density Matrix and Ensembles

Theorem: For any unit trace, positive semidefinite matrix M ∈ L(V ), we can associate an
ensemble for which M is the density matrix.
Proof:

The matrix M, being Hermitian and positive semidefinite, can be diagonalized. It has
nonnegative eigenvalues λi ≥ 0 with i = 1, . . . ,N, where N = dimV .
Denote |ei ⟩ as the eigenvectors associated with λi . The matrix M is expressed as:

M =
N∑
i=1

λi |ei ⟩⟨ei |,
N∑
i=1

λi = 1.

Consider the ensemble EM defined by:

EM ≡ {(λ1, |e1⟩), . . . , (λN , |eN⟩)}.
This definition is consistent as the λi are nonnegative and sum to one.
The density matrix ρEM

associated with EM is constructed as:

ρEM
≡

N∑
i=1

λi |ei ⟩⟨ei | = M.

Thus, the claim of the theorem is confirmed.
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Example: Density Matrix for General Spin One-Half States

The density matrix ρ for a general 2× 2 Hermitian matrix is written as:

ρ =
1

2
(a0 I+ a · σ), a0, a1, a2, a3 ∈ R.

The trace condition tr ρ = 1 fixes a0 = 1. The eigenvalues of a · σ are ±|a|. The
positivity of ρ requires the eigenvalues of a · σ to satisfy:

1

2
(1± |a|) ≥ 0, or equivalently |a| ≤ 1.

The general density matrix for mixed or pure states becomes:

Spin one-half density matrix: ρ =
1

2
(I+ a · σ), |a| ≤ 1.

The Bloch Ball:

The set of allowed pure and mixed states forms the Bloch ball, a unit ball in the
Euclidean three-dimensional space {a1, a2, a3}.
Boundary (|a| = 1): Represents pure states.

Interior (|a| < 1): Represents mixed states.

Center (a = 0): Represents the unpolarized (maximally mixed) state.
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Measurement Along an Orthonormal Basis

Recall: Measuring a pure state |ψ⟩ along an orthonormal basis {|i⟩}Ni=1 gives the
probability of the system collapsing to state |i⟩ as:

p(i) = |⟨i |ψ⟩|2.

For a mixed state described by the density matrix ρ, this probability is generalized to:

p(i) =
n∑

a=1

pa |⟨i | ψa⟩|2 =
n∑

a=1

pa ⟨i | ψa⟩ ⟨ψa | i⟩ = ⟨i |
n∑

a=1

pa |ψa⟩ ⟨ψa | i⟩ = ⟨i |ρ|i⟩.

this probability depends only on ρ and not on the ensemble that defines ρ.

After the measurement, the state will be in one of the basis states |i⟩. The corresponding
orthogonal projector for this state is:

Mi ≡ |i⟩⟨i |, with M†
i = Mi , MiMi = Mi ,

∑
i

Mi = I.

If the measurement outcome is not available, the post-measurement state is a mixed state
described by the ensemble:

Ẽ = {(p(1), |1⟩), . . . , (p(N), |N⟩)}.
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Measurement Along an Orthonormal Basis (cont.)

The new density matrix ρ̃ after measurement is constructed as:

ρ̃ =
∑
i

p(i)|i⟩⟨i | =
∑
i

|i⟩⟨i |ρ|i⟩⟨i | =
∑
i

MiρMi ,

This passage from ρ to ρ̃ gives us the effect of measurement along a basis on a quantum
system when the result is not available.

Properties:
1 The trace of the new density matrix remains one:

tr ρ̃ =
∑
i

tr (MiρMi ) =
∑
i

tr (ρMiMi ) =
∑
i

tr (ρMi ) = tr

(
ρ
∑
i

Mi

)
= tr ρ = 1.

In summary, measurement modifies the density matrix as:

ρ̃ =
∑
i

MiρMi ,

capturing the effect of quantum measurements when the outcome is unavailable.
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Dynamics of Density Matrices
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Dynamics of Density Matrices

The time evolution of a quantum state is governed by the Schrödinger equation:

∂

∂t
|ψ⟩ = − i

ℏ
Ĥ|ψ⟩, ∂

∂t
⟨ψ| = i

ℏ
⟨ψ|Ĥ.

Using these equations, the time derivative of the projector |ψ⟩⟨ψ| becomes:

∂

∂t
|ψ⟩⟨ψ| = − i

ℏ
(
Ĥ|ψ⟩⟨ψ| − |ψ⟩⟨ψ|Ĥ

)
= − i

ℏ
[Ĥ, |ψ⟩⟨ψ|].

For a density matrix ρ associated with an ensemble:

ρ =
n∑

a=1

pa|ψa⟩⟨ψa|,

the time derivative generalizes to:

∂ρ

∂t
= − i

ℏ
[Ĥ, ρ].
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Properties of Density Matrix Evolution

The equation ∂ρ
∂t = − i

ℏ [Ĥ, ρ] preserves:

Hermiticity: Since ∂ρ
∂t is proportional to the commutator of ρ with Ĥ, which is

anti-Hermitian, ρ remains Hermitian.
Trace Conservation: The trace remains constant:

d

dt
tr ρ = tr

(
∂ρ

∂t

)
= − i

ℏ
tr[Ĥ, ρ] = 0.

The density matrix evolves using the unitary operator Û(t):

Û(t) = e−
i
ℏ Ĥt , ρ(t) = Û(t)ρ(0)Û†(t).
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Purity of the Density Matrix

The purity of a density matrix is defined as:

ζ(ρ) ≡ tr(ρ2).

For a pure state, ζ = 1. If ζ < 1, the state is mixed.

Under unitary evolution, the purity remains constant:

dζ

dt
=

d

dt
tr(ρρ) = tr

(
dρ

dt
ρ+ ρ

dρ

dt

)
= 2 tr

(
ρ
dρ

dt

)
.

Substituting ∂ρ
∂t = − i

ℏ [Ĥ, ρ], we find:

d

dt
ζ =

2

iℏ
tr(ρ[Ĥ, ρ]) =

2

iℏ
tr(ρĤρ− ρρĤ) = 0.

Conclusion: Pure states remain pure under unitary evolution.
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Subsystems and Schmidt Decomposition
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Subsystems

In quantum mechanics, a composite system AB can be described as the tensor product of
its subsystems:

HAB = HA ⊗HB ,

where HA and HB represent the state spaces of the subsystems A and B.

dimHA = dA,
(
eA1 , . . . , e

A
dA

)
orthonormal basis,

dimHB = dB ,
(
eB1 , . . . , e

B
dB

)
orthonormal basis.

For a density matrix ρAB representing the full composite system, the reduced density
matrix of subsystem A is defined by tracing out the degrees of freedom of subsystem B:

ρA = trB ρAB =
∑
k

〈
eBk

∣∣∣ ρAB ∣∣∣eBk 〉 ∈ L (HA) ,
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Reduced Density Matrix Properties

The reduced density matrix ρA satisfies the following key properties:

1 Trace:
trA ρA = trA trB ρAB = tr ρAB = 1,

2 Positive semidefinite:

⟨vA| ρA |vA⟩ = ⟨vA|
∑
k

〈
eBk
∣∣ ρAB ∣∣eBk 〉 |vA⟩ =∑

k

⟨vA|
〈
eBk
∣∣ ρAB |vA⟩

∣∣eBk 〉 ≥ 0, ∀ |vA⟩ ∈ HA,

The reduced density matrix allows us to compute expectation values of observables acting
only on subsystem A:

trA(ρAOA) = trAB(ρAB OA ⊗ IB), with OA ∈ L (HA) (1)

This property ensures that measurements on subsystem A can be accurately described
without reference to the full system AB.
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Proof

The general density matrix ρAB for the composite system HA ⊗HB is expressed as:

ρAB =
∑
i ,j ,k,l

ρij ,kl |eAi ⟩⟨eAj | ⊗ |eBk ⟩⟨eBl |,

where |eAi ⟩ and |eBk ⟩ are orthonormal bases of HA and HB , respectively.

Taking the partial trace over subsystem B yields the reduced density matrix for subsystem
A:

ρA = trBρAB =
∑
i ,j ,k

ρij ,kk |eAi ⟩⟨eAj |.

34 / 57



Proof (cont.)

Computing the left-hand side of the identity in equation (1):

trA(ρAOA) =
∑
i ,j ,k

ρij ,kk⟨eAj |OA|eAi ⟩.

Computing the right-hand side of the same identity:

tr(ρABOA ⊗ IB) = trBtrA
∑
i ,j ,k,l

ρij ,kl |eAi ⟩⟨eAj |OA ⊗ |eBk ⟩⟨eBl |.

After simplifications:

tr(ρABOA ⊗ IB) =
∑
i ,j ,k

ρij ,kk⟨eAj |OA|eAi ⟩.

This verifies that:
trA(ρAOA) = tr(ρABOA ⊗ IB).
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Theorem: Subsystem Expectation Values

Theorem: For any operator SAB ∈ L(HA ⊗HB), let SA = trB(SAB). Then for any
observable ÔA ∈ L(HA):

trA(SAÔA) = trAB(SAB ÔA ⊗ IB).

Implications:
1 The reduced density matrix ρA provides a consistent framework for computing observables

localized on subsystem A.
2 This consistency applies regardless of the entanglement or mixed-state nature of the full

system ρAB .
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Example: Two Entangled Spins

Consider the pure state |ψAB⟩ of two entangled spins:

|ψAB⟩ =
1√
2

(
|+⟩A|−⟩B − |−⟩A|+⟩B

)
.

The density matrix for the composite system AB is ρAB = |ψAB⟩⟨ψAB |. Explicitly, this is
written as:

ρAB =
1√
2
(|+⟩A|−⟩B − |−⟩A|+⟩B)

1√
2

(
⟨+|A ⟨−|B −

〈
− |A ⟨+|B

)
=
1

2
(|+⟩⟨+|)A ⊗ (|−⟩⟨−|)B − 1

2
(|+⟩⟨−|)A ⊗ (|−⟩⟨+|)B

− 1

2
(|−⟩⟨+|)A ⊗ (|+⟩⟨−|)B +

1

2
(|−⟩⟨−|)A ⊗ (|+⟩⟨+|)B .

Reduced Density Matrix for Subsystem B: By tracing out subsystem A, we obtain:

ρB = trA ρAB =
1

2
|−⟩⟨−|+ 1

2
|+⟩⟨+|

This shows that subsystem B is in a maximally mixed state, irrespective of the entangled
nature of the full state |ψAB⟩.
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Schmidt decomposition

The pure states |ΨAB⟩ of a bipartite system AB can be expressed in an insightful and
simplified manner, using the following guiding principles:

The associated density matrices ρA and ρB of the subsystems A and B are utilized to
guide the decomposition.

The decomposition is referred to as the Schmidt decomposition of the pure state
|ΨAB⟩, named after Erhard Schmidt (1876–1959), who is also credited with the
Gram-Schmidt procedure for constructing orthonormal basis vectors.

The Schmidt decomposition provides a structure that is simpler than the general tensor
product of the two subsystems.

1 The state |ΨAB⟩ is written in terms of an orthonormal basis {|kA⟩} of HA and an orthonormal
basis {|kB⟩} of HB that, respectively, make the reduced density matrices ρA and ρB diagonal.

2 The decomposition defines an integer r , called the Schmidt index, that characterizes the
degree of entanglement of the subsystems A and B.
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Expansion of Bipartite Pure States

Consider a bipartite system AB with a pure state |ΨAB⟩ ∈ HA ⊗HB , where HA and HB

are the Hilbert spaces of subsystems A and B, respectively.

Assume dA ≤ dB , where dA = dim(HA) and dB = dim(HB).

The state |ΨAB⟩ can be expressed in terms of the basis states of HA ⊗HB :

|ΨAB⟩ =
dA∑
i=1

dB∑
j=1

ψij |eAi ⟩ ⊗ |eBj ⟩,

where ψij are the expansion coefficients.

In the Schmidt decomposition, the state can be rewritten as:

|ΨAB⟩ =
dA∑
i=1

|ψB
i ⟩ ⊗ |eAi ⟩, with |ψB

i ⟩ =
dB∑
j=1

ψij |eBj ⟩.

Observations:
The vectors |ψB

i ⟩ ∈ HB are not necessarily orthonormal.
The Schmidt decomposition provides a more structured representation, reducing the sum to
an integer r ≤ dA, the Schmidt rank.
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Schmidt Decomposition Derivation

To derive the Schmidt decomposition, we consider the pure state |ΨAB⟩ and its associated
density matrices:

ρAB = |ΨAB⟩⟨ΨAB |, ρA = trBρAB , ρA = trB(|ΨAB⟩⟨ΨAB |).
By construction, ρA is a Hermitian positive semidefinite dA × dA matrix and can therefore
be diagonalized.
Let (pk , |kA⟩), with k = 1, . . . , dA, be the eigenvalues and eigenvectors of ρA, where |kA⟩
forms an orthonormal basis for HA, and pk ≥ 0.
The density matrix ρA is expressed as:

ρA =

dA∑
k=1

pk |kA⟩⟨kA|,
dA∑
k=1

pk = 1.

If ρA is a pure state, only one eigenvalue pk is nonzero. In general, we assume r ≤ dA
eigenvalues are nonzero:

ρA =
r∑

k=1

pk |kA⟩⟨kA|, r ≤ dA, pk>r = 0. (2)
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Schmidt Decomposition Derivation (cont.)

Since |kA⟩ span HA, we can express the pure state |ΨAB⟩ as:

|ΨAB⟩ =
dA∑
k=1

|kA⟩ ⊗ |ψB
k ⟩,

where |ψB
k ⟩ are states in HB .

Note: The number of terms is at most dA, not dA · dB , as |ψB
k ⟩ does not necessarily span

HB .

The density matrix for |ΨAB⟩ can then be written as:

ρAB =

dA∑
k,k̃=1

|kA⟩ ⊗ |ψB
k ⟩⟨k̃A| ⊗ ⟨ψB

k̃
|.

Taking the trace over B, we now get

ρA = trB ρAB =

dA∑
k,k̃=1

|kA⟩⟨k̃A|⟨ψB
k̃
| ψB

k ⟩
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Schmidt Decomposition Derivation (cont.)

Compare the previous expression for ρA in equation (2), where no state |kA⟩ with k > r
appears.

This implies that the ansatz for |ΨAB⟩ must exclude such states; otherwise, nonvanishing
terms in ρA not included in equation (2) would appear.

Therefore, |ΨAB⟩ is rewritten as:

|ΨAB⟩ =
r∑

k=1

|kA⟩ ⊗ |ψB
k ⟩.
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Schmidt Decomposition Derivation (cont.)

Substituting the new form of |ΨAB⟩ into ρAB , we obtain:

ρAB =
r∑

k,k̃=1

|kA⟩ ⊗ |ψB
k ⟩⟨k̃A| ⊗ ⟨ψB

k̃
| ⇒ ρA =

r∑
k,k̃=1

|kA⟩ ⟨k̃A|⟨ψB
k̃
| ψB

k ⟩

To ensure consistency with ρA, states |ψB
k ⟩ must satisfy:

⟨ψB
k̃
| ψB

k ⟩ = pkδkk̃ , k , k̃ = 1, . . . , r .

Define normalized versions of |ψB
k ⟩ as:

|kB⟩ ≡
|ψB

k ⟩√
pk
, k = 1, . . . , r .

These states satisfy:
⟨kB |k ′B⟩ = δkk ′ , k , k ′ = 1, . . . , r .

If r < dB , additional orthonormal vectors can complete the basis for HB , but these extra
vectors are not involved here.
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Schmidt Decomposition Derivation (cont.)

The pure state |ΨAB⟩ of the bipartite system AB can always be written as:

|ΨAB⟩ =
r∑

k=1

√
pk |kA⟩ ⊗ |kB⟩, r ≤ dA ≤ dB .

Here:
r∑

k=1

pk = 1, pk > 0, k = 1, . . . , r ,

and the states |kA⟩ ∈ HA and |kB⟩ ∈ HB form orthonormal sets:

⟨kA|k ′A⟩ = δkk ′ , ⟨kB |k ′B⟩ = δkk ′ .
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Properties of the Schmidt Decomposition

The Schmidt decomposition:

Involves r ≤ dA terms, each a basis state of HA multiplied by some state in HB .
Ensures |kB⟩ states form an orthonormal set, like |kA⟩.

The density matrices ρA and ρB are given by:

ρA =
r∑

k=1

pk |kA⟩⟨kA|, ρB =
r∑

k=1

pk |kB⟩⟨kB |.

Both ρA and ρB have the same nonzero eigenvalues {pk}, determined by the Schmidt
number r .

Interpretation:

r = 1: A and B subsystems are not entangled, and the state is a tensor product.
r > 1: A and B are entangled; ρA and ρB are mixed.
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Example: Schmidt Decomposition

We revisit the pure state |ΨAB⟩ of a bipartite system AB:

|ΨAB⟩ =
1√
2
|+⟩A|+⟩B +

1

2
|−⟩A|+⟩B − 1

2
|−⟩A|−⟩B . (3)

The diagonalized reduced density matrix ρA is found to be (Exercise 22.5, 22.6):

ρA =
1

2

(
1 +

1√
2

)
|x ; +⟩⟨x ; +|+ 1

2

(
1− 1√

2

)
|x ;−⟩⟨x ;−|.

Using this, we construct an ansatz for |ΨAB⟩:

|ΨAB⟩ =
1√
2

√
1 +

1√
2
|x ; +⟩A|1B⟩+

1√
2

√
1− 1√

2
|x ;−⟩A|2B⟩,

where |1B⟩ and |2B⟩ are orthonormal states to be determined.
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Example: Schmidt Decomposition

Writing the |±⟩A states in (3) in terms of |x ;±⟩A

|ΨAB⟩ =
1

2
|x ; +⟩A ⊗

((
1 +

1√
2

)
|+⟩B − 1√

2
|−⟩B

)
+

1

2
|x ;−⟩A ⊗

((
1− 1√

2

)
|+⟩B +

1√
2
|−⟩B

)
.

After rewriting to make orthonormality manifest:

|ΨAB⟩ =
1√
2

√
1 +

1√
2
|x ; +⟩A ⊗

√
1− 1√

2

((
1 +

1√
2

)
|+⟩B − 1√

2
|−⟩B

)

+
1√
2

√
1− 1√

2
|x ;−⟩A ⊗

√
1 +

1√
2

((
1− 1√

2

)
|+⟩B +

1√
2
|−⟩B

)
.

Conclusion: The Schmidt number is 2, and subsystems A and B are entangled.
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Open Systems and Decoherence

48 / 57



Open Systems and Decoherence

Open systems interact with an environment E . The total system AE consists of:

Subsystem A: The focus of interest.
Subsystem E : The environment interacting with A.

Reduced density matrix of subsystem A is obtained by tracing over E :

ρA = trE (ρAE ),

where ρAE is the density matrix of the full system AE .
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Time Evolution of the Reduced Density Matrix

The time evolution of the reduced density matrix ρA(t) is governed by:

ρA(t) = trE
(
UρAE (0)U

†),
where:

U = U(t) is the unitary operator describing the evolution of the full system.

ρAE (0) is the initial density matrix of the system AE .

Consistency Checks:

Trace Preservation: tr ρA(t) = 1.

Positivity: ρA(t) remains a positive semidefinite operator.
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Example: Decoherence of a Qubit

Consider a spin-12 particle (qubit) in the state:

|ψA⟩ = α| ↑⟩+ β| ↓⟩, |α|2 + |β|2 = 1.

The qubit interacts with an environment initially in the pure state |0E ⟩. The total initial state
of the system is:

|ψAE ⟩ = |ψA⟩ ⊗ |0E ⟩ = α| ↑⟩ ⊗ |0E ⟩+ β| ↓⟩ ⊗ |0E ⟩.

The density matrix is:

ρA = trE ρAE = trE |ψAE ⟩ ⟨ψAE | = trE |ψA⟩ ⊗ |0E ⟩ ⟨ψA| ⊗ ⟨0E |

= |ψA⟩ ⟨ψA| =
(

|α|2 αβ∗

βα∗ |β|2
)
,
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Example: Decoherence of a Qubit (cont.)

Assume the interaction changes the environment state for | ↓⟩. The total state becomes:

|ψ′
AE ⟩ = α| ↑⟩ ⊗ |0E ⟩+ β| ↓⟩ ⊗ |1E ⟩.

The reduced density matrix of the qubit is obtained by tracing out the environment:

ρ′A = trE
(
|ψ′

AE ⟩⟨ψ′
AE |
)
.

Expanding |ψ′
AE ⟩⟨ψ′

AE |, we have:

|ψ′
AE ⟩⟨ψ′

AE | = |α|2| ↑⟩⟨↑ | ⊗ |0E ⟩⟨0E |+ |β|2| ↓⟩⟨↓ | ⊗ |1E ⟩⟨1E |

+αβ∗| ↑⟩⟨↓ | ⊗ |0E ⟩⟨1E |+ α∗β| ↓⟩⟨↑ | ⊗ |1E ⟩⟨0E |.
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Example: Decoherence of a Qubit (cont.)

Taking the partial trace over the environment, we obtain:

ρ′A = |α|2| ↑⟩⟨↑ |+ |β|2| ↓⟩⟨↓ |.

As a matrix, ρ′A takes the form:

ρ′A =

(
|α|2 0
0 |β|2

)
.

This is a mixed state if α ̸= 0 and β ̸= 0.

tr
(
ρ′A
)2

= |α|4 + |β|4 =
(
|α|2 + |β|2

)2 − 2|α|2|β|2 = 1− 2|α|2|β|2 < 1.

The qubit experienced decoherence. It is worth comparing the density matrices ρA and ρ′A.
The former has off-diagonal matrix elements, storing the information about the relative phases
of the different components of the wave function. The latter does not.
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Example: Two Coupled Spin-One-Half Particles

Consider two spin-12 particles interacting through an Ising Hamiltonian:

Ĥ = −ℏωσ̂(1)z σ̂
(2)
z , ω > 0.

At t = 0, the state of the two particles is a pure state:

|ψ12(0)⟩ =
1

2

(
a+| ↑↑⟩+ a−| ↑↓⟩+ b+| ↓↑⟩+ b−| ↓↓⟩

)
,

where the first arrow represents particle one, and the second represents particle two. The
coefficients a+, a−, b+, b− are complex numbers satisfying the normalization condition:

|a+|2 + |a−|2 + |b+|2 + |b−|2 = 4.

At t = 0, the density matrix ρ12 of the system is:

ρ12(0) =
1

4

(
a+| ↑↑⟩+ a−| ↑↓⟩+ b+| ↓↑⟩+ b−| ↓↓⟩

)(
a∗+⟨↑↑ |+ a∗−⟨↑↓ |+ b∗+⟨↓↑ |+ b∗−⟨↓↓ |

)
.

54 / 57



Example: Two Coupled Spin-One-Half Particles (cont.)

The evolution operator U(t) is given by:

U(t) = exp(−i Ĥt/ℏ) = e iωtσ̂
(1)
z σ̂

(2)
z , U† = e−iωtσ̂

(1)
z σ̂

(2)
z .

The density matrix ρ12(t) evolves as:

ρ12(t) = Uρ12(0)U†,

resulting in:

ρ12(t) =
1

4

(
a+e

iωt | ↑↑⟩+ a−e
−iωt | ↑↓⟩+ b+e

−iωt | ↓↑⟩+ b−e
iωt | ↓↓⟩

)
×
(
a∗+e

−iωt⟨↑↑ |+ a∗−e
iωt⟨↑↓ |+ b∗+e

iωt⟨↓↑ |+ b∗−e
−iωt⟨↓↓ |

)
.

Taking the trace over the second state space, the time-dependent density matrix ρ1(t) for the
first particle is:

ρ1(t) =Tr2ρ12(t) =
1

4

(
(|a+|2 + |a−|2)| ↑⟩⟨↑ |+ (a+b

∗
+e

2iωt + a−b
∗
−e

−2iωt)| ↑⟩⟨↓ |

+ (a∗+b+e
−2iωt + a∗−b−e

2iωt)| ↓⟩⟨↑ |+ (|b+|2 + |b−|2)| ↓⟩⟨↓ |
)
.
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Example: Two Coupled Spin-One-Half Particles (cont.)

Let us consider the case when a+ = a− = b+ = b− = 1, consistent with normalization. Then
the initial state is:

|ψ12(0)⟩ =
1

2

(
| ↑↑⟩+| ↑↓⟩+| ↓↑⟩+| ↓↓⟩

)
=

1√
2

(
| ↑⟩+| ↓⟩

)
⊗ 1√

2

(
| ↑⟩+| ↓⟩

)
= |x ; +⟩⊗|x ; +⟩.

The two particles are not entangled at t = 0. The density matrix for the first particle can be
obtained

ρ1(t) =
1

2
| ↑⟩⟨↑ |+ 1

2
cos 2ωt

(
| ↑⟩⟨↓ |+ | ↓⟩⟨↑ |

)
+

1

2
| ↓⟩⟨↓ |.

The diagonal terms lead to the required trace, and the off-diagonal terms oscillate. At t = 0,
the density matrix is ρ1(0) = |x ; +⟩⟨x ; +|, as expected, since the two particles are not
entangled, and this is the density matrix for the pure state |x ; +⟩ of the first particle.
For arbitrary times it is useful to compute trρ21

trρ21 = 1− 1

2
sin2 2ωt ≤ 1.

Since the density matrix represents a pure state if and only if the above inequality is saturated,
we see that the state is pure when sin 2ωt = 0.
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The Lindblad Equation

The Lindblad equation describes the dynamics of the density matrix ρ(t) for an open quantum
system, generalizing unitary evolution:

∂ρ

∂t
=

1

iℏ
[H, ρ] +

∑
k

(
LkρL

†
k −

1

2
{L†kLk , ρ}

)
.

Lk : Lindblad operators describing interaction with the environment (not necessarily
Hermitian).

The anticommutator is defined as {A,B} = AB + BA.

If Lk = 0, the evolution is purely unitary.

Properties:

Hermiticity: ρ(t) remains Hermitian since the right-hand side of the equation is
Hermitian.

Trace Preservation: The trace of ρ(t) is conserved
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