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Ensembles and Mixed States

m Intrinsic randomness of quantum mechanics: Unlike classical physics, where
probabilities arise solely from lack of knowledge, quantum mechanics involves intrinsic
randomness.

m Consider a state [¢)) € V, with V an N-dimensional complex vector space.

m Even with complete knowledge, measurements in quantum mechanics are probabilistic,
leading to the concept of an ensemble.

m New Layer of Randomness:

m Quantum mechanics adds a new layer of randomness;
m This arises when describing a subsystem that is entangled with the rest of the system.

m Density Matrix:

m To account for this added randomness, we use a density matrix—an operator on the state
space encoding the quantum state and this extra randomness.

m Pure vs. Mixed States:

m A pure state is represented by |1)) € V/, a vector in the Hilbert space.
m A mixed state accounts for additional randomness and cannot be described by a vector in V
alone.
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Stern-Gerlach Experiment

In the Stern-Gerlach experiment, a beam of silver atoms emerges from a hot oven, unpolarized,
with a spin state that is random. If we denote the spin state of an atom as |n) with n a unit
vector, then atoms have vectors n pointing in random directions. Can we represent this
ensemble of atoms with a quantum state |¢) that captures this intrinsic randomness?

The answer is no. The general state is

W>:3+|+>+a—’—>a at,a— G(C,

where |+) are the familiar 5, eigenstates. The state |¢), a pure state, is fixed by a; and a_,
thus fixing the direction n of the spin state. Consequently, |1)) cannot describe states |n) with
random n.

To simplify, assume an oven with 50% of the atoms polarized as |+) and the other 50% as
|—). This can be represented by pairs (p;, |¢;)), where p; is the probability of a given atom
being in the quantum state [¢;):

e={(3).(G17)}-

We denote E, as the ensemble of z-polarized states, with each entry specifying a state and
its probability. This ensemble represents the mixed state of our system.
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General Ensemble for Quantum Systems

For a general ensemble E associated with a quantum system with state space V, we have a
list of states and probabilities:

E:{(p17’¢1>)7"'7(pn7’¢n>)}7 pl?"'apn>07 P1++Pn:1

where n > 1 is an integer representing the number of entries in the ensemble. This ensemble
describes a general mixed state.

m The states [¢),) € V are normalized for all a=1,...,n:

<¢a‘wa> =1

The states [1),) are not required to be orthogonal to each other.

The integer n does not need to be related to the dimensionality dim V of the state space.
If n =1, then p; =1, and the ensemble represents a pure state |1).

For n > 2, we have a mixed state.

We can also have n > dim V since the states [¢,) are not required to be linearly
independent.
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Expectation Value of a Hermitian Operator in an Ensemble

If @ denotes a Hermitian operator we are to measure, its expectation value (©>E in the
ensemble E is given by

(Q)e = pa(thal Qo) = pr(v1|Qlth1) + -+ + pa(tn| Qlibn).

a=1

This becomes clear if we imagine measuring Q on the full ensemble E. The expectation value
<¢a|©|¢a> of Q in the ath subensemble of states |1b,) must be weighted by the probability p,
for states in E.

Now, consider an oven producing 50% of atoms in the state |x; +) and the other 50% in the

state |x; —). The ensemble E; is:

() ()}

The expectation value of Q in Ey is then

A 1 A 1 .
(Qe, = §<X: +|Qlx; +) + §<X: —|Qx; —).
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Equivalence of Ensembles

An interesting result emerges if we rewrite (Q)g, by expressing |x;+) and |x; —) in terms of
|+) and |—):

1

Qe =7 ((HI+ (=D Q(+H) +|-D)+ % ((+H = (=D QU= +1+)).

The off-diagonal matrix elements cancel, yielding:

Qe = 2CHAIH) + 5101 = (e,
Thus, for any observable, the expectation values in the two ensembles E, and E are identical,
making them physically indistinguishable.
Both ensembles represent the same mixed quantum state, despite the different entries. We are
led to a deeper understanding of representing a mixed quantum state using density matrices,
which we will explore further.
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Example: Unpolarized Ensemble

m The oven in the Stern-Gerlach experiment produces unpolarized silver atoms. We
analyze the expectation value of @ for the unpolarized ensemble and compare it with the
E, ensemble.

m In the unpolarized state, the values of n are uniformly distributed over the solid angle 4.

.- . S . . dQ
m The probability of n being within a solid angle d2 is 7.

The unpolarized ensemble is defined as:

Eump = { G 00D | In(6.0)) = cos 51+ + ¢sin ).

The expectation value of any observable Qis given by:

dQ

(@, = [ G 00,/ In(0.0))
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Example: Unpolarized Ensemble (cont.)

Integrating over ¢ eliminates off-diagonal elements of Q:

(Q)Euy = = (+IQI+) + =(—|Q]-)-

m This is the same result as for the E, and E, ensembles.

m The unpolarized ensemble E,,p is equivalent to the ensembles where half the states are
polarized in one direction and the other half in the opposite direction.
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Entangled States and Ensembles

An even simpler example of quantum states described by ensembles is provided by a pair of
entangled states. Let Alice and Bob each have one of two entangled spin one-half states. The
entangled state |)ap) they share is the singlet state of total spin equal to zero:

1
V2

m If Alice measures the spin of her state along the z-direction:

m If Alice gets |+), then the state of Bob is |—).
m If Alice gets |—), then the state of Bob is |+).

[Yag) = —= (1) al—)8 — |-)al+)B)-

m If the result of Alice’s measurement is unknown, the state of Bob can be described by the

ensemble:
Egob = {(;, |+>), (%» |—>) }
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Entangled States and Ensembles (cont.)

m If Alice measures along an arbitrary direction n:
m Using rotational invariance, the singlet state can be rewritten as:

) = %un; F)alm =05 — [m; =) alni +)s).

m The ensemble for Bob's state becomes:

Epob = {(; ni4), (% ni ) }

There is no pure state representing the quantum state of Alice’s particle when entangled

(example 22.2).
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Trace identity
m Consider two states |u), |w) € V. Define the operator |u)(w/|. The trace of this operator

is given by:
tr(fu)(w]) = (wlu).

m Proof:

m Assume |/) (i =1,..., N) form an orthonormal basis.
m Using trM = > .(i|M]i), for any operator M:

tr(lu){wl) = Z(iI(IU><W\)Ii> = Z(iIU><W|i>-

m Reordering the factors, we find:

tr(IU><WI):Z<| W|<Z| )

m Since ), |/)(i] =1L, this simplifies to:
tr(lu)(w]) = (wlu).

m Observation: The result follows as a corollary of the generalized cyclicity property of the
trace, tr(AB) = tr(BA), which holds even when A and B are not square matrices.
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The Density Matrix

m The density matrix p € L(V) is an operator on the Hilbert space V.
m Consider a general ensemble:

E= {(pla W1>) Pm W}n Zpa =1, p,>0.

m Expectation value of observable Q:

<©>E = Z Pa<1/}a‘é|¢a>-

a=1

m Using the trace identity (tr(|u)(w|) = (w | u)):

(Qe = patr(Qlta) (val)-
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The Density Matrix (cont.)

m For a linear operator A and constant p:
tr(pA) = ptr(A).
m Rewrite the expectation value:

(@) —tr(QY pulua) ).

a=1

m Define the density matrix:

PE = Z Pa|¢a><wa’-

m The density matrix contains all relevant information about the ensemble:

(Q)e = tr (Qre)
Eg.

1 1 1 1 1
p. = S (H + 510l = 5T o = sbxiH) (i + 5 ) i —| = 5L
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Remarks on Density Matrix

m The density matrix p is a Hermitian operator:

pl=p.

Hermitian property ensures real eigenvalues and diagonalizability.

B p is positive semidefinite:
(v|p|v) > 0 for all vectors v.

Nonnegative eigenvalues derived from:

(vlplv) Zpa (v[a)]> > 0.
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Remarks on Density Matrix (cont.)

m Trace of the density matrix is 1:

Zpatr(wja wa Zpa =1

m Removes redundancies: N
p=">_ pili)
ij=1

where pj; are elements of a Hermitian N x N matrix. p is specified by N2 — 1 real
numbers (trace = 1).
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Remarks on Density Matrix (cont.)

m Phases of ensemble states |1,) are irrelevant:

pE = per i [a) — €|,

m Physicists often refer to p as the "state” or "state operator” of the system.
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Density Matrix for a Pure State

m For a pure state |1)), the ensemble collapses to a single entry:

E={( ¥},

and the associated density matrix is:

p =)l

m Properties of the density matrix p for a pure state:

m It is a rank-one orthogonal projector onto the subspace generated by |¢).

m p is Hermitian and satisfies:

P = )l (vl = p.

m Trace property:
trp’ =trp=1.

m Theorem: For any state,
trp? < 1,

with the inequality saturated only for pure states.
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Purity of the Density Matrix

m Key relations for traces of the density matrix:
2 _
trp® <trp=1.
m Purity ((p) of a density matrix:

((p) =trp’.

m ( = 1: The state is pure.
m ( < 1: The state is mixed.

m Maximally mixed state: The density matrix is proportional to the identity matrix I:

g §

==

where N is the dimension of the state space.
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Derivation of the Maximally Mixed State

m Assume p = diag(p1, p2, - - -, pn), where p; > 0 and E,N:l pi = 1.

m Minimize Z,N:l p,-2 under these constraints using the Lagrange multiplier A:

N N
L(pl,---,pN;A)—Zp,-z—/\(—1+ZP;>-

i=1

m Stationary conditions:

g;_ =2pi—A=0, i=1,...,N gi:l—;pi:
m Solve for p;:
Pizg, N%Zl = p,:%.
m Resulting density matrix:
p= %]I.
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Example: Density Matrix for Spin One-Half Pure States

m The density matrix for a pure spin state |n), pointing along the unit vector n, is expressed
as:

1 13
In)(n| = ol + o Z; aioj,

where:

m [ is the identity matrix.
m o; (i =1,2,3) are the Pauli matrices.
m ap and a; are real constants.

m Using the projector P, = |n)(n|, the expression simplifies to:

ny(n|==-(I+n-o).

N
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Theorem: Density Matrix and Ensembles

Theorem: For any unit trace, positive semidefinite matrix M € £(V), we can associate an
ensemble for which M is the density matrix.

Proof:
m The matrix M, being Hermitian and positive semidefinite, can be diagonalized. It has
nonnegative eigenvalues \; > 0 with i =1,..., N, where N =dim V.
m Denote |e;) as the eigenvectors associated with \;. The matrix M is expressed as:

N

N
M=) \le)el, Y Ai=1
i=1

i=1
m Consider the ensemble Ej; defined by:
EM = {()\1, ]el)), ey ()\N, ]eN))}

This definition is consistent as the A; are nonnegative and sum to one.
m The density matrix pg,, associated with Ey is constructed as:

N
pEw =D Ailei) (el = M.
i=1

Thus, the claim of the theorem is confirmed.
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Example: Density Matrix for General Spin One-Half States
m The density matrix p for a general 2 x 2 Hermitian matrix is written as:
1
p= E(aOH +a-o), ag,a1,a,a3 R

m The trace condition trp = 1 fixes ag = 1. The eigenvalues of a- o are *|a|. The
positivity of p requires the eigenvalues of a - o to satisfy:

1

2

m The general density matrix for mixed or pure states becomes:

(1£1al]) >0, orequivalently |a| <1.

1
Spin one-half density matrix: p = 5(]1 +a-o0), |a <L
The Bloch Ball:

m The set of allowed pure and mixed states forms the Bloch ball, a unit ball in the
Euclidean three-dimensional space {a1, a2, as}.

m Boundary (]a| = 1): Represents pure states.

m Interior (]a] < 1): Represents mixed states.

m Center (a = 0): Represents the unpolarized (maximally mixed) state.
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Measurement Along an Orthonormal Basis

m Recall: Measuring a pure state [¢)) along an orthonormal basis {|i)}Y; gives the
probability of the system collapsing to state |i) as:
pli) = [t14)
m For a mixed state described by the density matrix p, this probability is generalized to:
n
’):Zpa ’wa Zpa Mpa wa = |Zpa’¢a wa > (i pli).
a=1

this probability depends only on p and not on the ensemble that defines p.
m After the measurement, the state will be in one of the basis states |/). The corresponding
orthogonal projector for this state is:

M= |iY(il, with M =M, MM =M, ZM—H

m If the measurement outcome is not available, the post-measurement state is a mixed state
described by the ensemble:

E = {(p(1). [1)). ... (p(N). [N))}.
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Measurement Along an Orthonormal Basis (cont.)
m The new density matrix p after measurement is constructed as:

p= ZP |—Z| o)l = > Mipht.

This passage from p to p gives us the effect of measurement along a basis on a quantum
system when the result is not available.

m Properties:

The trace of the new density matrix remains one:

trp= Ztr(M,-pl\/l,-) = Ztr (pM:M;) = Ztr (pM;) = tr (pz M;) =trp=1
m In summary, measurement modifies the density matrix as:
=Y MpM,,
i

capturing the effect of quantum measurements when the outcome is unavailable.
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Dynamics of Density Matrices

m The time evolution of a quantum state is governed by the Schrodinger equation:
0 i~ 0 i N
Slwy =2 Al), = (9] = 2

m Using these equations, the time derivative of the projector |¢) (1| becomes:

(AN ]~ 1) {918) = — £ [A, 1) (]

0 i
aW))(M =7

m For a density matrix p associated with an ensemble:

p=_ Palta) (al,

a=1
the time derivative generalizes to:

op _ ip
or —ﬁ[H,PI
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Properties of Density Matrix Evolution

m The equation % = —%[I:I,p] preserves:

m Hermiticity: Since % is proportional to the commutator of p with H, which is

anti-Hermitian, p remains Hermitian.
m Trace Conservation: The trace remains constant:

d ap i
%trp =tr (61‘) =3 tr[H, p] = 0.
m The density matrix evolves using the unitary operator U(t):

O0(t) = e=#Mt, p(t) = O(t)p(0) 0 (2).
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Purity of the Density Matrix

The purity of a density matrix is defined as:

For a pure state, ( = 1. If ( < 1, the state is mixed.

m Under unitary evolution, the purity remains constant:

a¢ _ d B dp dp dp
dt  dt tr(pp) = tr(dt'Oerdt> 2tr(pdt '

m Substituting % = —%[I:I,p], we find:

L= 2 w(plA o) = 2 tr(pFlp — poF) = 0.

m Conclusion: Pure states remain pure under unitary evolution.
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Subsystems

m In quantum mechanics, a composite system AB can be described as the tensor product of
its subsystems:

Hag = Ha® Hp,
where H 4 and Hpg represent the state spaces of the subsystems A and B.
i — A A .
dimH = da, <e1 ey edA> orthonormal basis,
; _ B B .
dimHg = dg, (el ,...,edB) orthonormal basis.

m For a density matrix pag representing the full composite system, the reduced density
matrix of subsystem A is defined by tracing out the degrees of freedom of subsystem B:

pa=1trgpag = Z<ekB‘PAB ’ei‘?> € L(Ha),
P
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Reduced Density Matrix Properties

m The reduced density matrix pa satisfies the following key properties:

Trace:
trapa =tratrg pap = trpag =1,

Positive semidefinite:

(val palva) = (val Y (ef| pag |ef) lva) = D (val (ef| pas|va) |f) =0, V|va) € Ha,
k k

m The reduced density matrix allows us to compute expectation values of observables acting
only on subsystem A:

trA(pA OA) = trAB(pAB Oa® ]IB), with Oph € [,(/HA) (1)

m This property ensures that measurements on subsystem A can be accurately described
without reference to the full system AB.
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Proof

m The general density matrix pag for the composite system Hp ® Hp is expressed as:

pas = > piulel)(ef!| @ |ef)(ef,
igik,l

where |e!) and |e?) are orthonormal bases of Ha and Hp, respectively.

m Taking the partial trace over subsystem B yields the reduced density matrix for subsystem
A:
pa=trepas = Y pijuclel)(ef).
ik

34 /57



Proof (cont.)

Computing the left-hand side of the identity in equation (1):

tI’A(pAOA) = Zpij,kk(ejA|OA|elA>'
ij.k

Computing the right-hand side of the same identity:

tr(pasOa @ lg) = trgtra > pijulel’) (e |Oa @ |ef) (el

ikl

After simplifications:

tr(pasOa @ 1) = pij ak (€' |Onlef).
ik
m This verifies that:
trA(pA(’)A) = tr(pAB(’)A & I[B).
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Theorem: Subsystem Expectation Values

m Theorem: For any operator Sag € L(Ha ® Hp), let Sa = trg(Sag). Then for any
observable Op € L(Ha):

tI’A(SAéA) = trAB(SAB OA & ]IB).

= Implications:

The reduced density matrix pa provides a consistent framework for computing observables
localized on subsystem A.

This consistency applies regardless of the entanglement or mixed-state nature of the full
system pag.
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Example: Two Entangled Spins
m Consider the pure state [¢)ag) of two entangled spins:
1
= —(14+)al=)5 — |-V al+)B).
V) \@O )al=)e —|=)al+)8)

m The density matrix for the composite system AB is pag = |ag){¢¥as|. Explicitly, this is
written as:

pas —\g (041=)5 — |)al+)8) } ((Ha (=15 = (= [ {+g)
1

(I {+Dae (I=)(=Ns — *(I N (=Dae (=){+)s

- *(!—><+\)A ® () (=Ns+3 (!—><—\)A @ (1) (+s-

m Reduced Density Matrix for Subsystem B: By tracing out subsystem A, we obtain:

N \

1 1
pB =trapag = §|—><—| + §|+><+|

m This shows that subsystem B is in a maximally mixed state, irrespective of the entangled
nature of the full state | aB).
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Schmidt decomposition

The pure states |Wag) of a bipartite system AB can be expressed in an insightful and
simplified manner, using the following guiding principles:

m The associated density matrices pa and pg of the subsystems A and B are utilized to
guide the decomposition.

m The decomposition is referred to as the Schmidt decomposition of the pure state
|Wag), named after Erhard Schmidt (1876-1959), who is also credited with the
Gram-Schmidt procedure for constructing orthonormal basis vectors.

m The Schmidt decomposition provides a structure that is simpler than the general tensor
product of the two subsystems.

The state |W4p) is written in terms of an orthonormal basis {|ka)} of 4 and an orthonormal
basis {|kg)} of Hp that, respectively, make the reduced density matrices pa and pg diagonal.

The decomposition defines an integer r, called the Schmidt index, that characterizes the
degree of entanglement of the subsystems A and B.
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Expansion of Bipartite Pure States

m Consider a bipartite system AB with a pure state |Wag) € Ha @ Hp, where Ha and Hp
are the Hilbert spaces of subsystems A and B, respectively.

m Assume da < dg, where day = dim(#Ha) and dg = dim(Hg).

m The state |Wap) can be expressed in terms of the basis states of Ha ® Hp:

da dp
A B
Wag) =D > wylef) ®|ef),
i=1 j=1
where 1);; are the expansion coefficients.
m In the Schmidt decomposition, the state can be rewritten as:

da dg
Wag) = [08) @ lef), with [08) = wylef).
i=1 j=1

m Observations:
m The vectors [¢)8) € Hp are not necessarily orthonormal.
m The Schmidt decomposition provides a more structured representation, reducing the sum to
an integer r < dj, the Schmidt rank.
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Schmidt Decomposition Derivation

To derive the Schmidt decomposition, we consider the pure state |W4g) and its associated
density matrices:

pag = Vag)(Vagl, pa=trepas, pa=tre(|Vas)(Vasl).

By construction, pa is a Hermitian positive semidefinite da x da matrix and can therefore
be diagonalized.
Let (pk,|ka)), with k =1,..., da, be the eigenvalues and eigenvectors of pa, where |ka)
forms an orthonormal basis for H 4, and px > 0.
m The density matrix pa is expressed as:

da

pA = Zpk!kA (kal, Zpk =1

k=1
If pa is a pure state, only one eigenvalue py is nonzero. In general, we assume r < dx
eigenvalues are nonzero:

pa=>_ pelka)(kal, r<da, prsr=0. (2)
k=1
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Schmidt Decomposition Derivation (cont.)

m Since |ka) span Ha, we can express the pure state |Wap) as:

da
Wag) = lka) ® [v%),
k=1

where [¢)B) are states in Hp.

m Note: The number of terms is at most da, not da - dg, as \¢E> does not necessarily span
Hs.
m The density matrix for |[W g) can then be written as:

da

pag = Y |ka) @ [WF)(kal © (2|

k,k=1
Taking the trace over B, we now get

da
pa=trgpag = Y |ka)(kal(W? | %)

Kk k=1

41/ 57



Schmidt Decomposition Derivation (cont.)

m Compare the previous expression for p4 in equation (2), where no state |ka) with k > r
appears.

m This implies that the ansatz for [Wag) must exclude such states; otherwise, nonvanishing
terms in pa not included in equation (2) would appear.

m Therefore, |V p) is rewritten as:

Wag) =) |ka) @ [00F).
k=1
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Schmidt Decomposition Derivation (cont.)

m Substituting the new form of |Wag) into pag, we obtain:

PAB = Z |ka) @ 1) (ka| @ (WF| = pa = Z |ka) (kal(WF | %)

K k=1 k,k=1
m To ensure consistency with pa, states |¢)2) must satisfy:
W7 [ VR) =pubp, kk=1,....r
m Define normalized versions of [¢)2) as

[4i)

|kg) = N

k=1,...,r.

m These states satisfy:
(kglkp) = 0w, kok'=1,...r

m If r < dg, additional orthonormal vectors can complete the basis for H g, but these extra
vectors are not involved here.
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Schmidt Decomposition Derivation (cont.)

m The pure state |W4g) of the bipartite system AB can always be written as:
r
(Wag) =Y v/Pilka) ® |ks), r<da<dp.
k=1

m Here:

r
Zpkzl, pk>0, k=1 ...r,
k=1
and the states |ka) € Ha and |kg) € Hp form orthonormal sets:

<kA‘k,/4> = Ok’ <kB’k/B> = Ok’ -
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Properties of the Schmidt Decomposition

m The Schmidt decomposition:

m Involves r < du terms, each a basis state of H 4 multiplied by some state in Hg.
m Ensures |kg) states form an orthonormal set, like |ka).

m The density matrices ps and pg are given by:

r r

pa=>_pelka)(kal, ps =" pilks)(ksl.

k=1 k=1

m Both pa and pg have the same nonzero eigenvalues {py}, determined by the Schmidt
number r.

m Interpretation:

m r=1: A and B subsystems are not entangled, and the state is a tensor product.
m r > 1: Aand B are entangled; pa and pg are mixed.
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Example: Schmidt Decomposition

We revisit the pure state |W ) of a bipartite system AB:

Vas) = s |+)al s + 51 al+)e = 51-)al-)s. ()

m The diagonalized reduced density matrix pa is found to be (Exercise 22.5, 22.6):

pa=g (14 75 ) bttt + 5 (1= ) b))

m Using this, we construct an ansatz for |Wag):

(Wag) = \/ |X +)alleg) + \/ IX )Al2B),

where |1g) and |2g) are orthonormal states to be determined.
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Example: Schmidt Decomposition

m Writing the |£) , states in (3) in terms of |x; %),

Wag) = 3hiae ((1+25) Ha = 2510a)
+3bimdae (1= 25) e+ J5l-de).

m After rewriting to make orthonormality manifest:

-ty e (14 e )

e i (g e o)

Conclusion: The Schmidt number is 2, and subsystems A and B are entangled.
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Open Systems and Decoherence

m Open systems interact with an environment E. The total system AE consists of:

m Subsystem A: The focus of interest.
m Subsystem E: The environment interacting with A.

m Reduced density matrix of subsystem A is obtained by tracing over E:

pa = tre(pae),

where paf is the density matrix of the full system AE.
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Time Evolution of the Reduced Density Matrix

The time evolution of the reduced density matrix pa(t) is governed by:

pa(t) = tre(Upag(0)UT),

where:
m U =U(t) is the unitary operator describing the evolution of the full system.
m pae(0) is the initial density matrix of the system AE.

Consistency Checks:
m Trace Preservation: trpa(t) = 1.

m Positivity: pa(t) remains a positive semidefinite operator.
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Example: Decoherence of a Qubit

Consider a spin—% particle (qubit) in the state:

[Ya) =l )+ Bl1), |ef +|8 =1.

The qubit interacts with an environment initially in the pure state |Og). The total initial state
of the system is:

[WaE) = [Ya) ® 0g) = a| 1) ® [0g) + B| |) ® [OF).

The density matrix is:
pa = tre pae = tre [Yae) (Yae| = tre [¥a) ® |0g) (al ® (Of|
2 *
— o (= (e T2 )
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Example: Decoherence of a Qubit (cont.)

Assume the interaction changes the environment state for | |). The total state becomes:
[Wag) =l 1) ® |0g) + 8] 1) @ |1E).
The reduced density matrix of the qubit is obtained by tracing out the environment:
pa = tre([Vag) (Vagl)-
Expanding [1g)(Yagl, we have:
[Wag) (Wael = lal?] 1)1 [ @ [0) (O] + B[ (4| @ |1e){Le]
+af* [ ([ @[0e)(Lel + Bl (T | @ [1£) {0k
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Example: Decoherence of a Qubit (cont.)

Taking the partial trace over the environment, we obtain:

pa = o[ D+ I8P

,_(la* 0
PA = 0 ‘5‘2 .

This is a mixed state if & £ 0 and 3 # 0.

As a matrix, p/; takes the form:

2 2
tr(pa)” = lal* +181* = (lal* +81%)" — 2la?|8]* = 1 - 2|a/?|5]* < 1.

The qubit experienced decoherence. It is worth comparing the density matrices pa and p/y.
The former has off-diagonal matrix elements, storing the information about the relative phases
of the different components of the wave function. The latter does not.
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Example: Two Coupled Spin-One-Half Particles

Consider two spin—% particles interacting through an Ising Hamiltonian:
A= —hwsMs?  w>o.

At t = 0, the state of the two particles is a pure state:

[902(0)) = 3 (a1 1) 2| 1) + by| 11} + 5| 11)),

where the first arrow represents particle one, and the second represents particle two. The
coefficients ay,a_, by, b_ are complex numbers satisfying the normalization condition:

@[+ [a-f? + by |* + [b-|* = 4.

At t = 0, the density matrix pio of the system is:

p12(0) = 7 (4] M)+ a [ 1)+ byl 113+ b 1)) (3301 |+ a2 (1 |+ B |+ B2 (14 ).
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Example: Two Coupled Spin-One-Half Particles (cont.)

The evolution operator U(t) is given by:

~ S (1) A )
U(t) = exp(—iHt/h) = 'tz 7z UT = e iwto

N—~

Q>
N

(2

The density matrix p12(t) evolves as:
p12(t) = Upr2 (0T,
resulting in:
p1a(8) =3 (a5 1) + a7 1) + bye | U1) + b_e| 11))
x (e AT |+ am L |+ bLe (T |+ bre (L ]).

Taking the trace over the second state space, the time-dependent density matrix p1(t) for the
first particle is:

p1(8) =Trapia(t) = 5 (1 P+ la P DT |+ (2 612 1 a_bte ) 1)(L |
+ (albye 2 2t b e )| 1) (1 |+ (|by P+ b 2)] (L)
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Example: Two Coupled Spin-One-Half Particles (cont.)

Let us consider the case when a; = a_ = b, = b_ =1, consistent with normalization. Then
the initial state is:
1 1 1
0)) = = (I T+ T+ I+ 1)) = —= (I D+ 1)@= (I 1+ 1)) = Ixi +)1xi +).
[912(0)) = S ([ T+ TH+[ 1)+ ) \@W | ﬁ!ﬁ D)) = +H)®lx+)
The two particles are not entangled at t = 0. The density matrix for the first particle can be
obtained

pr(8) = 2 D0 |+ 3 cos 2wt (| 1901+ D0 ) + 51 (L

The diagonal terms lead to the required trace, and the off-diagonal terms oscillate. At t = 0,
the density matrix is p1(0) = |x; +)(x; +|, as expected, since the two particles are not
entangled, and this is the density matrix for the pure state |x; +) of the first particle.

For arbitrary times it is useful to compute trp?

1
trpg =1— > sin? 2wt < 1.
Since the density matrix represents a pure state if and only if the above inequality is saturated,

we see that the state is pure when sin 2wt = 0.
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The Lindblad Equation

The Lindblad equation describes the dynamics of the density matrix p(t) for an open quantum
system, generalizing unitary evolution:

0 1 1
a—’t' =S Ha+) (LkaL - 2{LLLk,p}) :
k

m L, Lindblad operators describing interaction with the environment (not necessarily
Hermitian).

m The anticommutator is defined as {A, B} = AB + BA.
m If L, =0, the evolution is purely unitary.
Properties:

m Hermiticity: p(t) remains Hermitian since the right-hand side of the equation is
Hermitian.

m Trace Preservation: The trace of p(t) is conserved
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