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Exchange Degeneracy



Identical Particles

m Two particles are identical if all their intrinsic properties (mass, spin, charge, magnetic
moment, etc.) are the same and therefore no experiment can distinguish them.
m Two identical particles can have different momentum, energy, angular momentum.

m For example all electrons are identical, all protons, all neutrons, all hydrogen atoms are
identical (the possible excitation states viewed as energy, momentum, etc.)
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Exchange Degeneracy

® In quantum mechanics, the states of identical particles face a unique complication:
exchange degeneracy.

m This degeneracy arises because identical particles cannot be distinguished by labels,
leading to equivalent choices in state descriptions.

m For distinguishable particles, we can clearly write the state as:
v); ®@|w), e Vo W.

m However, for identical particles, labeling is ambiguous. For example (focus only on the
spin ):
[+)1®|=), and |=); @ [+),
both describe the same physical system.

m Two different states in V ® V/; in fact, they are orthogonal states. The labels are useful
for purposes of description: for the first state, we say that the first particle is up and the
second down; for the second state, the first particle is down, and the second particle is up.
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Superposition and Continuous Degeneracy

m If the two states above are equivalent, any superposition of them is also an equivalent
description:
W) =al+)1 ® =)+ Bl=)1 @ +), o +[8=1.
m The states are equivalent for all possible values of o and 3. This results in continuous
degeneracy
m This degeneracy complicates the specification of a state for identical particles.
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Ambiguity Example and Exchange Degeneracy Problem

m To illustrate the ambiguity, consider calculating the probability py of finding both particles
in a specific state |¢):
[Y0) =[x +)1 ® X +),

m Alternatively, [1)g) can be written in terms of the usual z-based states

|w0> = \}E (|+>(1) + ’_>(1)) X \}5 (|+>(2) + |—>(2))
- %('H(l) DHe) o He P @ e T -o @ |—>(2))-

m The probability py of finding the particles in state |1)g) is given by:

2

= It0o | ) = |30+
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Ambiguity in the Probability Calculation

m This probability calculation reveals ambiguity depending on the choice of o and j:

1 1
fa=0=—, thenpy=—=
\ﬁ 0 2
m However, with a different choice:
Ifa=—-p= 1 then =0
a=—0=——, =
\6 po

m The chosen values of a and 8 matter when they should not.
m This ambiguity illustrates the problem of exchange degeneracy.

m The symmetrization postulate gives a satisfactory resolution of the exchange degeneracy
conundrum, stating that physical states are either totally symmetric or totally
antisymmetric under permutations of the particles. Particles described by symmetric
states are called bosons, and particles described by antisymmetric states are called
fermions.
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Permutation Operators

m We will consider permutation operators and the permutation groups they form. These are
relevant when we have identical particles that can be exchanged without physical
consequence.

m These operators act on the tensor-product space:

viN=vg...eV,, (1)
—_———
N
which is the candidate state space for the description of N identical particles.

m In this section, we do not yet implement the constraints due to identical particles. The
only constraint we are imposing is that each of the particles in the N-particle collection
lives in a state space V; thus V®N is the state space relevant to the collection.

m For the moment, it is best to think of the particles as distinguishable.
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Two-particle systems: Overview

m Two-particle systems: Assume we have two particles, particle one and particle two,
each described by the same state space V spanned by orthonormal basis states |u;), with
i=1,2,....

m Consider the two-particle state where particle one is in state |u;) and particle two is in
state |uj), with u; # uj:

ui)(1) @ |uj)2) € V@ V.

m Note: [uj)(1) ® |uj)(2) is a different state in V ® V, where particle one is in |u;) and
particle two is in |u;).
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Permutation Operator

m We define a linear operator Py acting on V ® V that produces this exchange by
permuting the i/ and j labels:

Po1lui) 1y ® |uj)(2) = luj) 1y @ |ui)2)-

m This describes the action of Py; € L(V ® V) on all basis vectors of V @ V, fully defining
the operator.

m Py is called a transposition operator, as it transposes the states of particle one and
particle two.
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Properties of the Transposition Operator

m The iterated action of Py gives the identity operator:

m This means that P»; is its own inverse.

m We now claim that the operator 1521 is Hermitian:

Pl = Por.
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Proof of Hermiticity

Proof: An operator M is Hermitian if (Mo, 8) = (a, M) for all states a, 5.
Writing the states as u; ® u; = |u;)(1) @ |uj)(2), we have the inner product:

(uk @ uj|u; @ uj) = dikdj.

m We check that
(uk ® uy, Prruj ® Uj> = <Uk QU U & Ui> = 5il5jk7

m is equal to
(Poruk @ up, uj @ uj) = (U @ Uy, uj @ uj) = 6irdjk.
m This confirms Hermiticity.
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Unitarity of the Transposition Operator

m Since the transposition operator is Hermitian and squares to itself, it is also unitary:
Py Pl =1
21 :

m This suggests that the transposition operator could be used to define a symmetry.
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Eigenvalues and Eigenstates of Py

Given a Hermitian operator, such as P»1, we consider its eigenvalues and eigenvectors.

Since FA’221 =1, the eigenvalues \ of 1321 must satisfy A2 =1. Thus, A = +1 are the only
possibilities.

m The corresponding eigenstates in V ® V are classified as:

mIf /?21\1@ = |¢), then |1)) is a symmetric state.
m If Py|yp) = —|¢b), then |¢) is an antisymmetric state.

m Symmetric and antisymmetric states are, respectively, invariant or change sign under
transpositions.

m The set of symmetric states forms a subspace Sym(V ® V'), and the antisymmetric states
form Anti(V @ V).
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Operators Sand A

m These subspaces are constructed using two Hermitian operators S and A, defined as:

—_

§E (].—l—/szl), AAE

N -

m The operators S and A satisfy:
/321§ = § and 1321AA = —AA.
m Verification of these identities:
O S DA .
P215:§(P21+P21):§(P2]_+1):5,

A A 1, - ~ 1 - ~
PnA=2(Pn — P3) = 5 (P —1)=-A

m This confirms that § projects onto symmetric states and A onto antisymmetric states.
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Symmetric and Antisymmetric States

m Given a generic state [¢)) € V ® V, we define:
[¥s) = Slv) € Sym(V @ V), [ipa) = Alv) € Anti(V @ V).

m This gives us a symmetric state |¢)s) and an antisymmetric state [1)4).

m We verify that: . o )
Pails) = Pa1S|y) = S|v) = [s),

Pa1lipa) = PaAjp) = —Alh) = —[1a).

m These relations confirm that S acts as a projector onto the symmetric subspace
Sym(V ® V), and A acts as a projector onto the antisymmetric subspace Anti(V ® V).
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Projector Properties of Sand A

The Hermitian operator $ projects onto Sym(V ® V) and A projects onto Anti(V ® V).

These projectors satisfy:
§5§=5, AA=A
m Additionally, as complementary projectors, they obey:

S+A=1, SA=AS=o.

The full space V ® V can be decomposed into the orthogonal subspaces of symmetric
and antisymmetric states.

V® YV = range So range A, and range S1 range A
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N-Particle Systems and Permutation Operators

m For N =2, we have a simple permutation group with only the identity operator and a
single permutation operator I521.
m The symmetric group Sy consists of:
m ldentity operator 1.
m Transposition P,1, which exchanges the states of two particles.

m For N > 2, the number of permutation operators increases, forming the symmetric group
Sn, where permutations can involve rearranging more particles.
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Permutation Notation for N-Particle Systems

m Define permutation operators for N particles using the notation P where:

iip...in

= {Ail7 f2, ..., In} represents a reordering of particles.

m Pj moves the state of the i-th particle to the first position, j-th particle to the second, and
k-th particle to the third.

m For example:
Pt |ur) (1) ® [us) ) @ |ue) 3y = us) (1) @ [ue) 2y @ |ur)(s) -
m The inverse of I5231 is I3312 such that:

Po31 P31p = 1.
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Permutation Operators

m A permutation of N objects is defined by the function o that maps the ordered integers
1,..., N into an arbitrary ordering:
a:[l,...,N] = [a(1),...,a(N)].

The permutation operator P, associated with « is written as:

Po = Po(1),0(2),....a(N)-

Extending the rule for the three-particle case, this operator acts as follows:

Polut)ay ® -+ @ |un) vy = [Ua()) (1) @+ ® |Ua(ny) (v)-

Example:

Pi1a2|ur) (1) @ |u2) (2) ® |us)(3) ® |ua)(ay = |us)(1) ® |ur)(a) @ |ua)(z) @ |u2)(a).-

Dropping subscripts on states and assuming they are ordered from 1 to N, we write:
Prraz|a) @ |b) @ |c) ® |d) = |c) @ |a) @ |d) @ |b).
For simplicity, omitting the tensor product symbol ®, we have:

153142|abcd> = |cadb).
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Symmetric Group 53

m The N = 3 permutation operators form the symmetric group Sz with 3! = 6 elements:

P13 =1, P32, P31, P13, Posz, Psor.

transpositions

m A transposition is a permutation in which only two labels are exchanged, leaving the rest
in canonical order. For example:

m Pia: Swaps the states of the second and third particles, leaving the first particle unchanged.
m Transpositions can be denoted by the labels of the two exchanged particles in ascending

order:
(23) = P132, (12) = Po13, (13) = P3o1.
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Symmetric Group S; (Part 2)

m The multiplication table for the group S3 is provided below.

Table: A - B matrix for S3.

A\B| 1 Py Py (23) (12) (13)
1 [ 1 Py P (3) (12 (13)
Psiz | Pz Posi 1 (12) (13) (23)
P>31 P31 1 Ps312 (13) (,\23) (,\12)
(23) | (3) (13) (12) 1 Pozi Psp
(12) | (12) (23) (13) Psz 1 Pox
(13) | (13) (12) (23) P Psp 1
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Properties of Permutations

In general, any permutation can be expressed as a product of transpositions.

Any set of integers can be rearranged into any arbitrary position through successive
transpositions.
m The decomposition of a permutation into transpositions is not unique, but the parity of
the permutation (even or odd) is unique modulo 2:

m A permutation is even if it results from an even number of transpositions.

m A permutation is odd if it results from an odd number of transpositions.

The identity element is an even permutation.

Even permutations have even parity, while odd permutations have odd parity.
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Hermitian and Unitary Properties of Transpositions

m All transpositions are Hermitian and unitary. This proof extends to general permutations:
m Since the product of unitary operators is unitary, any permutation is a unitary operator.
m Arbitrary products of transpositions are not Hermitian unless they commute.
m Unitarity implies that the Hermitian conjugate of a permutation is its inverse, preserving
parity:
Po=Py...Py =P =P . Pl =P, P,
and thus, as expected,
P.Pl =1.
m Claim: For any Sy, the number of even permutations equals the number of odd
permutations.

m Proof outline: Map my, transforms even to odd permutations and vice versa. This map is
one-to-one, confirming equal counts.
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Complete Symmetrizer and Antisymmetrizer

m Permutation operators do not all commute, so we cannot generally find a complete basis
of states that are eigenstates of all permutation operators.

m However, we can find some states that are simultaneous eigenstates of all permutation
operators.

m Lack of commuting operators means no complete basis but allows some simultaneous
eigenstates.

m Consider N particles, each with state space V, forming a collection in V&N,
m Define symmetric states |¢)s) that remain invariant under all permutations P,

Paltos) = [ibs), Va.

m Symmetric states are eigenstates with eigenvalue +1 and form the subspace Sym" V.
m Define antisymmetric states [¢)4), where odd permutations change the sign:

+1, if P, is even

/5 — = A
2[¥a) = €alda), <o {—1, if Py is odd

m Antisymmetric states form the subspace Anti"V ¢ V&N,
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Projectors for Symmetric and Antisymmetric Subspaces

Our next goal is the construction of projectors S and A from V&N into Sym"V and AntiVV,
respectively. As we will confirm below, the projectors are defined as follows:

S= /\I/!Z'Ba and AE%ZGQISQ.

where the sums are over all N! permutations. S is called the symmetrizer, and Ais called the
antisymmetrizer. The first thing to note is that both S and A are Hermitian operators:

PN ~

§=5" and A=A

28 / 98



Hermitian Conjugation and Permutations

Hermitian conjugation is a one-to-one invertible map from the set of all permutations to itself.
Due to unitarity, Hermitian conjugation maps each permutation to its inverse. Since the sum
inSis simply reordered, making it clear that Sis not changed.

Given an a permutation, we define the af permutation via

Pl =P.;. (2)

Here af : [af(1),...,af(N)] is the list that makes the above equation hold. Since the set of
all af's is equal to the set of all a's, it follows that for any function f(a) of a we have

Y flah) =) f(a). (3)

Indeed, both sides of the equation simply compute the sum of the evaluation of f over all
permutations.
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Hermitian Conjugation of Sand A

Now consider the Hermitian conjugation of S. We have

N.Z Pl = N.Z (4)

We now use the identity (3) to find that
St=38. (5)

The antisymmetrizer Ais also unchanged because Hermitian conjugation does not change the
parity of a permutation—namely, €, = €,. As a result,

AT:%ZGQISQTZ%ZEQT/SQT leﬁa o = A, (6)

It is also important to see what happens when SorAis multiplied by a permutation operator.
We claim that

A A

Po§ =8Py =8 PuA= AP —ci A @)
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N

Orthogonal Projectors: S and

>

Both S and A are orthogonal projectors:

§2=8 A=A SA=A5=0 (8)
Proof:

2= lyps- Lty Tysos 9

—mz 67 —ﬁz —m - 9 ()

o L pA— L Acrts i tmaza 10

mzea a —ﬁZE(an —7'2 _m , ( )

P S S I 1

—mea o —7!2601 —mZEa—O ( )

Here, > €o = 0 follows because there are equal numbers of even and odd permutations.
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Projection to Symmetric and Antisymmetric States

We now confirm that § and A project to symmetric and antisymmetric states. This means
that for an arbitrary [¢) € VN we find S|y) € SymN V.

P.S|y) = Slp), Va. (12)
Analogously, for an arbitrary [1)) € VEN we find Alyp) € AntiV V.
PLAlY) = e Ay, Ve (13)
Hence, as claimed, $ and A are projectors into the symmetric and antisymmetric subspaces:

S:veN s symNv, A veN o AntiVy. (14)
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Example: Symmetrizer and Antisymmetrizer for S;

As we have seen before, the symmetric group Ss3 has six permutation operators:
Pio3 =1, P32, P31, Piz2, Pos, and  Pso,

where the last three are transpositions. In this case the symmetrizer S and antisymmetrizer A
are

.1 . ) A A A
S= 6(1 + P312 + Pa31 + P132 + P13 + Pa21), (15)
.1 . . . . A

A= o1+ Pa2+ Post — Prs2 — P13 — Pan). (16)

For N = 2 the operators S and A add up to the identity, this does not hold for N = 3:
~ ~ 1 ~ ~
S+A= §(l+P312+P231) # 1. (17)

In fact, for N > 2 the direct sum of the purely symmetric and purely antisymmetric subspaces
is a proper subspace of V&N:

SymNV @ AntiVV c VEN N > 2. (18)

For N > 2, the state space V®N is not spanned by purely symmetric and purely antisymmetric
states.
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The Symmetrization Postulate

We will state the symmetrization postulate, which should be considered an assumption of
quantum mechanics.

Symmetrization postulate:
In a system with N identical particles, the states that are physically realized are not
arbitrary states in VEN but rather are totally symmetric (that is, belonging to Sym™V/),
in which case the particles are said to be bosons, or they are totally antisymmetric
(that is, belonging to Anti"V/), in which case they are said to be fermions.

It is intuitively clear that the exchange degeneracy problem has been solved. If we have two
identical particles, one in state |a) and the other in a different state |b), the state of the two
particles is neither |a) ® |b) nor |b) ® |a)—the degenerate possibilities—but rather

|a) @ |b) £ |b) ® |a), up to scale.
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Symmetrization Postulate

m Let [u) € V®N be an arbitrary vector in the tensor product. Associated with |u), we
introduce the vector subspace V|,y generated by acting on |u) with all the permutation
operators in Sy:

Vi) = span{ P, |u), Va} C venN, (19)
E.g. for N =3, |u) = |a); |a), |b)3 and V|, = span{|aab) , |baa), |aba)}.

m Depending on the choice of the state |u), the dimension of V|, can go from one to N!.

This dimensionality, if different from one, is the degeneracy due to exchange.

m The exchange degeneracy problem is the ambiguity we face in selecting a representative
for the physical state in V|,y. The problem is solved by the symmetrization postulate if we
can show the following:

Claim: Up to a multiplicative constant, V|,, contains at most
a single state in Sym™ V and at most a single state in AntiV V.
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Proof of the Claim

Proof. We first show that, up to a multiplicative constant, V/|,y contains at most a single ket

in SymN V. Suppose we have a state [¢)) € V|u) that is symmetric: [¢) € SymM V. Since
) € V|u), we can write it as follows:

= caPalu), (20)
with ¢, some coefficients. Since [1) € Sym" V| it is left invariant by the action of S:

) = S |v) = SanP| =Y aSPiluy=> caSluy=5)) . (21)

This shows that any symmetric |¢)) in V|,, must be proportional to S |u) and is therefore
unique up to a multiplicative constant.
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Proof of the Claim (Continued)

The argument is similar for the antisymmetric states. Suppose we have a state [1)) € V|, that

is antisymmetric: [) € AntiV V. Again, we write it as
¢> — Z doz'ﬁa u
«
with d,, some coefficients. Since i) € AntiVV/, it is left invariant by the action of A:

) = Alp) = AZ doPolu) = daAPolu) = eadaAlu) = Alu) Y eada.

(67

This shows that any [¢)) must be proportional to A |u) and is therefore unique up to a
multiplicative constant.

(22)

(23)
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Pauli’s Exclusion Principle

The state in AntiVV will fail to exist in V|, if two or more V states appearing in
|u) = |uj,) ® - - - ® |uj,) are the same. This is the content of Pauli’s exclusion principle,
which states that two or more identical fermions cannot be found in the same state.

This is easily confirmed. Assume |u) = |uj,) ® - -+ ® |uj,) is such that two fermions, the pth
and the gth, are in the same state |uk). It then follows that the transposition (pg) leaves |u)
invariant:

(pq) [u) = |u) .
Acting on this relation with the antisymmetrizer, we find

A~ ~

A(pa) lu) = Alu) .

Since (pq) is an odd permutation, this gives

resulting in A|u) = 0. Therefore, no state exists.
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Additional Remarks on the Symmetrization Postulate (Part 1)

m Two types of statistics: The postulate describes particles with two kinds of statistics:
bosons and fermions. Due to the constraint on their wave functions, the statistical
behavior of bosons and fermions is significantly different.

m Spin-statistics theorem: Quantum field theory and special relativity together prove the
spin-statistics theorem. It establishes that:

m Bosons are particles of integer spin (0, 1, 2, ...).
m Fermions are particles of half-integer spin (1/2, 3/2, ...).

m Composite particles: The symmetrization postulate for elementary particles implies a
specific statistic for composite particles. Composite particles are either bosons or
fermions, obeying the symmetrization postulate.

€] e

H - atom #1 H - atom #2

Figure: p; and e; are the proton and electron of the first atom. p, and e, are the proton and electron
of the second atom.
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Additional Remarks on the Symmetrization Postulate (Part 2)

Example: Two hydrogen atoms The two-atom system has four particles, with wave function
Y(p1, ey s p2, € ). Since the two electrons are identical spin—% particles, the wave function
must be antisymmetric under the exchange e; < e, :

U(p1, ey p2,e) = —t(p1, e i p2.&y)
The same argument applies to the protons:

Y(p2, €61 P16y ) = —v(p1, ey P2, €;)
Thus, under the simultaneous exchange of electrons and protons:

V(p2.€;ip1 e ) = v(p1 ey p2,€;)

This exchange swaps the two hydrogen atoms. Since the wave function is symmetric, the
hydrogen atom is a boson!
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Additional Remarks on the Symmetrization Postulate (Part 3)

m The postulate is in fact a description of the most general statistics of particles that live in
three spatial dimensions.

m Permutation-induced exchanges: the particles move in some trajectories to realize the
permutations.

m In three spatial dimensions there are no new possibilities, just bosons or fermions.

m When space is two-dimensional, there are new possibilities. Transpositions of particles
need not produce only sign factors on the wave function; general phases are in principle
possible. Particles with such behavior are called anyons.
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Operators transform under permutations

Consider an operator B(n) acting on the n-th vector space, such that:

BOlu @ )y = (Blu) , @ )y,

Bu) © |y = Iy © (Blu)) ,
Action of Py on B(1): Applying Po; on B(1), we have:
P B(1)Palui)ay © |uj) ) = Por (Bluy)) gy ® i) (2) = B(2)ui) @ |uj).

Hence,

Similarly, we find:
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Operators transform under permutations (continued)

General Operator Action: For a generic operator é(l, 2), we find:
P»16(1,2)Pn = 6(2,1).
If ©(1,2) = 6(2,1), we say © is symmetric. For a symmetric operator:
0= Pnb(1,2)Py — 6(1,2),

which implies:
[P21,0(1,2)] = 0.

Thus,
[P21, (1 2)]=0 6 is symmetric.
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Operators transform under permutations

Any operator Be L(V), acting on the single-particle state space V/, can define operators on
the tensor product VOV, relevant for a system of N identical particles. We define

B(k) € £(V®N) as the operator that acts on the k-th state in any basis vector of V&N
Examples include:

Bl)=B®1---®1, BR)=19B®---®1

Permutations act by conjugation on the é(k) operators and modify the state space they act
upon. We claim that:

PLB(k)Po = B(a(k)) (24)
Proof:
m é(k) acts on the state that P, places on the k-th position, specifically, |Ua(k))-

m Finally, Pl = (Isa)*1 brings back this state, with B acting on it, to its original position.
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Symmetric Operators and Permutations

Consider a general operator é(l7 ..., N), constructed from an arbitrary set of operators acting
on various particles. Let 1,..., N be the labels of these operators, specifying the state space
on which they act.

From Eq. (24), we have:

A

P1O(1,...,N)Py=6(a(1),...,a(N)),

where the arguments on the right side are a reordering of 1,..., N. A Hermitian operator
M(1,2,..., N) is completely symmetric if, for any permutation «, it satisfies:

M(a(1),...,a(N)) = M(1,2,...,N).
For such operators, we have:

~

PIM(1,2,...,N)Py = M(1,2,...,N).
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Conservation and Symmetrization

A completely symmetric operator commutes with all permutation operators:
[M(1,2,...,N),P,] =0, Va.

For identical particles, the Hamiltonian /-Al(l, ..., N) must be a completely symmetric
observable, implying:
[H(1,...,N),P,] =0.

This leads to the conservation of all permutation operators P.. giving:

d , a i, o~ A
E<Pa>:ﬁ<[H’Pa]>:0'

Both symmetrizer S and antisymmetrizer A, being sums of permutation operators, are
conserved:

A

[A(,...,N),5] =[AQ,...,N),Al = 0.
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Time Evolution of Symmetric and Antisymmetric States

The conservation of § and A implies they commute with the unitary time evolution operator
U. Thus:

m If a state is fully symmetric at t = 0, it remains symmetric for all times.
m If a state is totally antisymmetric at t = 0, it remains antisymmetric for all times.

This ensures that the symmetry properties of the initial state are preserved throughout time
evolution.
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Building Antisymmetric States

Suppose you want to build a three-fermion state starting from the following state |u) € V®3:
|u) = |w1) (1) ® [w2)(2) @ |w3) gy -

The antisymmetrized state, obtained by acting with the antisymmetrizer on |u), is:

~ 1 A

Alu) = 5 Y caPalwn) ) ® [w2) () © |w3) s

1 |W1>(1) |w1>(2) |W1>(3) 1
=31 |2y [w2de) lw2)@g)| = ek lwidy © lwi)(a) @ lwk)s) -
|W3>(1) |W3>(2) |W3>(3)

Here, repeated indices are summed over. ¢ is the parity of the permutation FA’,-J-k.
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Slater Determinant

Recall the general formula for the determinant of an N x N matrix Bj;:

det B = €aBu(1)1Ba(2)2 - Bamn-

Now, let |w) € V®N be a state of the form
w) = "*)1)(1) ® ’W2>(2) Q- ® |WN>(N) )
with |w;) € V for i =1,..., N. We define the N-fermion state [¢),,) up to normalization as:
) = Alw)
where A is the antisymmetrizer. To calculate A |w), note that the action of the permutation
P, on |w) gives:
Pe |w> = |wa(1)>(1) ® |wa(2)>(2) Q- Q |wa(N)>(N) :

Therefore, applying the antisymmetrizer yields:
1
) = A jw) = NI Z 6(1 a m Z €a |Wa(1)>(1) " ® ’w >(N)

51 /98



Constructing the N-Fermion State

Define a matrix wj; of kets, where the row index / labels the different states and the column

index j labels the various particles:

With this definition, the antisymmetrized state |¢,,) becomes:
[e) = A lw) = N Z €aWa(1)1 " Wa(N)N = 1 detw
|W1>(1) ’w1>(/v)
N : : (25)

|WN>(1) |WN>(N)

This final expression for |1),,) is known as the Slater determinant for the set of states {|w;)}.
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Normalization

We can use the Slater determinant to construct the position-space wave function for a system
of N identical fermions by applying the position-space bra on both sides of equation (25)

Vo(X1, - Xn) = (K, X)),

with (X1,...,Xn| = (1) (31| @ - - @y (Xn|- On the right-hand side, bringing in the bras with
particle labels, we get

—

wl()?l) e wl(xN)
Yo (X1, ..., Xny) =N det| : ) (26)

wN()?l) wN(f('N)

with N some normalization constant.
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Properties and Implications of the Fermionic Wave Function

The fermionic wave function (X, ..., Xy) defined by the Slater determinant has key
properties:

m Pauli’s Exclusion Principle: If w;(X) = wj(xX) for any i # j, the determinant vanishes:
Yo(X, ..., Xn) = 0.

m Antisymmetry under Exchange: Swapping two coordinates X; and X; changes the sign
of the wave function, enforcing fermionic statistics.

This determinant form, or Slater determinant, is foundational for describing N-fermion systems
in quantum mechanics.

54 / 08



Normalizing Wave Functions and Probabilities

m We have already defined position-space bras: (x,...,Xn| = (1) (X1| ® - - @ () (Xn|. The
overlap of such states with similarly defined kets is given by:

(Kiy oo XNV i) = 0O (R = 4) - 6P (R — dv).

m The completeness relation in the N-particle state space takes the form
3o 35 o > > >
/d X1‘--d XN‘Xl,...,XN> <X1,...,XN‘ = 1.

m Here, each integral is three-dimensional and runs over all of space. This completeness can
be verified by acting on |y1,...,¥n).

m We define the position-space wave function (X, ..., Xy) associated with an N-particle
state [1) € VON: (X, ..., xXn) = (X1,..., Xn|Y).

m The normalization condition for the wave function is:

/d3)?]_ . 'd3)_<'N|w()?17 v 7)_(’N)‘2 =1

Note: |{(x1,...,%n)|? is a totally symmetric function of the arguments—this is true for
identical bosons and for identical fermions because any exchange of arguments changes
the wave function only by a sign.
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Probability for Two Identical Particles

m Consider, for example, the case of two identical particles and the expression
A3 d35% (%1, %) |2

m If the particles are distinguishable, this gives the probability of finding the first particle at
X1 in d3X; and the second particle at x> in d3%.

m For identical particles, we should ask: What is the probability of finding one particle at X
within d3Xa and the other at Xg within d3Xg? Using the double integral:

/d3>?1d3>?2 (%1, %)% = 1,

the configuration (X1, X2) = (Xa, Xg) or (X1,X2) = (X, Xa) both contribute equally,
leading to the probability:

Probability of finding a particle at X4 and another at xg = 2 - d3Xad>%5 \w()?A,XB)Iz.
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Generalization for N-Particle States

More generally, the probability of finding in an N-particle state a particle at each of the
positions (X1, -+ ,Xy) with ranges (d3xq,--- ,d3Xy) is:

NUA35y - 3%y |0 (Re, . .., X)) % (27)

However, the probability of finding all identical particles at the same position X within d3x
does not include the extra N! factor:

Probability of all particles at ¥ = d3x--- 3% |¢(X, . .., X)|°.
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Normalization of the N-Fermion Wave Function

Let us return to address the normalization of the N-fermion wave function (26). This cannot
be done in general unless we know the orthogonality properties of the one-particle wave
functions. Assume the wi(X),...,wn(X) are orthonormal:

/d3>?w7‘(>?) wj(X) =65, i,j=1,...,N.
In this case, we achieve proper normalization with

1
'(ﬁ()_(']_,...,)_(’[\/) == W

wN(Xl) e wN(.f(’N)

This is clear: The determinant is the sum of N! terms. In the calculation of

[ d3%; -+ - d3%y|1|?, due to orthonormality, each term from the determinant gives a +1
contribution when integrated against its complex conjugate, and zero otherwise. The N! terms
yield a total of N! that is canceled precisely by the square of the determinant prefactor in the
expression. Thus, ¢ satisfies [ d3x; - - d3Xy|¢|? = 1, as required.
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Hong-Ou-Mandel Two-Photon Experiment

Consider the experiment where two identical photons hit a balanced beam splitter
simultaneously. The claim was that both photons must end in one detector or the other; the
processes in which one photon ends in each detector interfere destructively.

M>:<:)) @JJIDl

Two identical photons hit a balanced beam splitter (the reflection
and transmission probabilities are the same), one from the top and
one from the bottom. The D1 and D2 detectors never click simulta-
neously; the two photons both end up together on either D1 or D2.

=) \Q&Dz

The action of a beam splitter with two input ports, top and bottom, can be represented by a
2 x 2 unitary matrix U of the form

-5 2): 0= w=0)

We have defined the state |1), representing a photon incident from the top, and the state |]),
representing a photon incident from the bottom.
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Hong-Ou-Mandel Two-Photon Experiment

m To the right of the beam splitter, the state |1) is a photon heading to D1, while the state
|}) is a photon heading to D2.

m The incoming state of two photons, one incident from the top and one incident from the
bottom, must be symmetrized because the particles are identical bosons. The normalized
incident state |Winc) is therefore

1
Wine) = 75 (N © i) + Wiy © M)

m Since each photon experiences the action of the beam splitter, the outgoing state [Wqyt) is
1
Wour) = (U U) [Winc) = 7 [(U ™M @ WI)e +WI)a @ WUIN)e

- \2 (!T>(1) ® M@y~ P ® |¢>(z)>

The first term gives the amplitude for both photons to end up in D1, and the second term
gives the amplitude for both photons to end up in D2. As claimed, we can't get a single
photon in each detector.
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Particles with Two Sets of Degrees of Freedom

Consider a particle that has both spatial degrees of freedom and spin degrees of freedom.

‘wspatiao ® |wspin> .

Let V be the vector space of spatial states, and let W be the vector space of spin states. The
general states [¢)) of the particle belong to the tensor product:

W)y e Ve W.

The space V ® W is the state space of the particle. If we had N such particles, the states of
the system would live in the Nth tensor product of the single-particle state space:

(Vow)?N=(veaw) .- (Ve Ww).
If you think of basis elements of tensor products as ordered lists of states, it is clear that one
can identify the following spaces:
(V® W)®N o~ V®N ® W®N.
On the right-hand side, we are listing first the N basis vectors in V' and then the N basis
vectors in W. For the case of two identical particles, N = 2, the above identification reads
(Vo W)®2 = ye2 g Wwe2,
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Exchange of Particles in V ® W Space

Now consider a state of two particles and the identification above::

() ® wady) ® (1)) @ w2 )) = (Idy @ 1)) @ (Iwady @ In2)y) ) -

To explore particle exchange, we focus on the state on the right. Treating it as a list of four
states, we use the language of permutations. Here, exchanging the two particles is represented

by Paras:

PoasIvi) (1) @ [v2) 2) @ 1) (a) ® [w2) ) = [v2)(ay © 1) (o) © [W2) 1) @ [wa) g -
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Eigenvalues of Permutation Operators

m This permutation exchanges both V and W states. We can express Pr143 as a product of
two independent permutations:

P2143 = P2134 - P1243.

FA’2134 permutes the V states, while I31243 permutes the W states. These operators
commute, each squaring to the identity, and each with eigenvalues £1. Hence, they can
be diagonalized simultaneously. They also commute with Pr1a3, s0 diagonalizing Pr13a
and FA’1243 simultaneously diagonalizes ,f’2143 as well.

m Denoting the eigenvalues by A, we have:

A2143 = A2134A1243.

The possible values of A are summarized in the table below:

A2143 | A2134 | A1243
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
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Symmetrization and Antisymmetrization of V ® W States

Since I52143 is the operator that exchanges the two particles, the states with Ap143 = 1 live in
Sym2(V @ W) (bosons), and the states with Ap143 = —1 live in Anti?(V ® W) (fermions).
The value A2143 = 1 is realized in two ways:

A2134 = A1243 = 1, or Ap13s = A4z = —1.
The states for Ax134 = 1 are in Sym2V, and those for A1p43 = 1 are in Sym2 W, implying:
A2134 = A2a3 = 1 = Sym?V ® Sym?W.
Similarly, the states for which A\>134 = —1 are in Anti®V/, and those for A1243 = —1 are in

Anti?W, resulting in:
2134 = A\1oa3 = —1 = Anti2V ® Anti2W.
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Decomposition of Symmetric and Antisymmetric Spaces

The states with A143 = —1 belong to Anti2(V ® W) and can arise in two ways:
A2134 = —A1243 =1, or  — Az134 = A1243 = 1.

This results in the decomposition:

Anti?(V @ W) = (Sym?V @ Anti?W) @ (Anti?V @ Sym?W).
Summarizing, we obtain:

Sym?(V ®@ W) = (Sym?V @ Sym*W) @ (Anti?V @ Anti? W),

Anti?(V @ W) = (Sym?V @ Anti?W) @ (Anti?V @ Sym>W).
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States of Two-Electron Systems

m Consider the wave function ¢ for two electrons. This wave function depends on the
position of each electron and the spin state of each electron.

Y (X1, m1;x2, mp) = ¢ (x1,%2) - x (Mg, m) .

m Assume that y is a normalized spin state. It can be viewed as a superposition of the
triplet and the singlet states that arise by combining the two spins.

m Focus on two important alternatives, denoted as 11 and . The total wave function
must be antisymmetric under the exchange of the electrons,

1 (X1, m1; X2, m2) = ¢4 (X1,X2) - Xsinglet (M1, m2)

o (X1, m1; X2, Mp) = ¢d— (X1,X2) * Xtriplet (M1, M2).

m Since the singlet is antisymmetric and the triplet is symmetric, the spatial wave functions
must obey the following relations

¢+ (x1,X2) = o4 (x2,Xx1) .
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States of Two-Electron Systems (continued)

m Recalling (27), the probability of finding one electron at positions x; and the other
electron at x» is
2dP = 2dX1dX2 |¢) (Xl, X2)|2 .

m For simplicity, we will assume that the electrons do not interact with each other and that
the total Hamiltonian is spin independent ,
Fit =H®1+1®H, with I:I:p—
m
m The time-independent Schrodinger equation for the spatial part of the wave function is

+ V(x)

h? h?
[—zmvil + Vi(x1) - %Vi + V(Xz)] ¢ (x1,%2) = E (x1,%2) .
m This equation is separable, so there is a solution of the form ¢ (x1,%2) = ¢a (x1) ¢5 (x2),
h? h?
[—mvi + V(x)} ¢a(x) = Eaga(x), [—2mv§ + V(x)} ¢8(x) = Epdp(x),

with E = E5 + Eg. We can choose the ¢4 and ¢p wave functions to be normalized, but
they need not be orthogonal.

(DA, 0B) = /d3x da(x)pp(x) = aas # 0.
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Degenerate States and Normalization

Conditions for Degenerate States:
m States of a Hamiltonian with different energies are orthogonal.
m For a nonzero apg, ¢a and ¢g must be degenerate in the spectrum of A, implying
EA = EB.
By Schwarz's inequality,

[(Pa, 08)17 < (ba, da) (08, 8) = 1,

showing that |aag|? < 1 or equivalently, |aag| < 1.

Constructing Symmetric and Antisymmetric Spatial Wave Functions:

m Define spatial wave functions ¢4 (x1,x2) with definite exchange symmetry as:

b (1, %2) = ﬁ [Ba(x1)08 (x2) + Sa(x2)ds (x1)] (28)

where N4 is a real normalization constant.
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Normalization Condition

Writing out the probability, we find:

d3x1d3%0|pr (X1, %2) 2
_ %Nid3x1d3X2 U¢A(X1)‘2’¢B(X2)‘2 + ‘¢A(X2)‘2’¢B(Xl)’2 + 2Re (¢Z(X1)¢E(X2)¢A(X2)¢B(X1))]

Since the integral of the left-hand side must equal one, we have:

1

\/1 + |OJAB‘2

m When ¢, and ¢ are orthogonal, normalization is reduced for the symmetric wave
function and increased for the antisymmetric wave function.

1
1= M2 (1+1420008P) = M=

Comparison with Orthogonal States:
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Probability of Finding Electrons at the Same Position

Calculating dP4:
m The probability dP+ of finding both electrons within d3x of the same position x is given
by:

dPy = d3x d3x|p (x, x)|?
1
= SN x [2]9a(x)*|0(x)[* + [¢a(X) |68 (x)|*] = NEdxdx|pa(x)[*|os(x)*(1 £ 1)
m Substituting the value of N1 determined earlier, we obtain:

2

4P, =
T 14 |ans)?

lpa(x)?|os(x)[2d3xd3x, dP_ =0.

Interpretation of dP4:
m dP, corresponds to the spin singlet state, while dP_ is associated with the spin triplet.

m Electrons avoid each other in the triplet state due to the antisymmetry of the spatial wave
function, which corresponds to dP_ = 0.

m For symmetric spatial wave functions, dPy is enhanced, indicating a higher probability of
the particles being at the same point compared to distinguishable particles.
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Comparison with Distinguishable Particles

Wave Function for Distinguishable Particles:
m For distinguishable particles, the normalized wave function ¢p(x1,x2) is given by:

dp(x1,%2) = Ppa(x1)PB(X2),

which represents the amplitude for the particle in state A to be at x; and the particle in
state B to be at x».
m The probability dPp of both particles being at the same point is:

dPp = |¢a(x)[*|ps(x)[Pd*x d*x.

Relation to dP.:

m We find:
2

1 + ]aAB|2
m This shows that the probability of finding identical particles at the same place is enhanced
compared to distinguishable particles by a factor of two, reduced slightly by the overlap of
one-particle states.
Thus, we have demonstrated the conditions under which identical particles exhibit enhanced
probability at the same point, as desired. dPy > dPp

apP, dPp.
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Particles at Different Points

Probability of Identical Particles:

m More generally, for particles located at different points, we can consider the probability of
finding one particle at x; within d3x;, and the other at x, within d3x,.

m For identical particles, this probability dP; .+ (with / indicating identical particles) is:
AP+ = 2d%x1d%x2 |+ (x1, x2)|*.

Probability of Distinguishable Particles:
m For distinguishable particles, we calculate the same quantity by summing probabilities:

m The probability that particle A is at x; and particle B at x;.
m Plus, the probability that particle A is at x5 and particle B at x;.

m This total probability dPp o for distinguishable particles is:

dPp tor = d*x1d’x2 (|pa(x1)*[05(x2)* + |0a(x2) |¢5(x1)[) -
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Comparison and Expectations:
m For the + case, when x; = x5 = x and d3x; = d3x, = d3x, we observe that
dP;+ = 2dPy and dPp tor = 2dPp.
m This confirms that we are comparing the correct quantities.
m More generally, we expect dP; > dPp ot Wwhen x; is near xo, a relationship that could
be verified in specific examples.
m Additionally, we expect dP; — < dPp tot for x; near x.
This concludes the probability comparison for finding identical and distinguishable particles at
different points.
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Non-Overlapping Wave Functions

Motivation: We explore why we don't symmetrize wave functions for distant electrons, like
those in the lab and on the moon. When an electron’s wave function is localized on the moon,
it has no support in the lab, and vice versa. The question essentially addresses how to handle
identical particles that are spatially separated with no wave function overlap.

b #0 0540 Two particles localized in disjoint regions R4 and Rg. The
95=0 ¢,=0 one-particle wave function ¢4 and ¢g have support in R

R, R, 0 Ry =0 Rp and Rp, respectively.

Disjoint Support of Wave Functions: Consider two identical particles with wave functions
localized in separate, non-overlapping regions Ra and Rg (illustrated in Figure).

m ¢a(x) is nonzero only in Ra, while ¢g(x) is nonzero only in Rp.

m The regions are disjoint, meaning R4 N Rg = 0.
Under these conditions, the overlap integral vanishes:

aAB = /d3X ¢A(X)¢B(X) =0 = N:t =1.

Because ¢4 and ¢ have disjoint supports, ensuring no overlap at any point x.
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Calculating Probability for Non-Overlapping Regions

Setup of Symmetrized Wave Functions: Using our symmetrized wave functions, we
calculate the probability dP of finding an electron in d3x4 around x4 € R4 and another in
d3xg around x5 € Rg.

The probability dP is given by:

dP = B xad®xg (|¢+(xa,x8)[* + |+ (x5, x4)]?) -

Form of ¢4 (xa,xp): With normalization N1 = 1 (as shown by Eq. (28)), the symmetrized
and antisymmetrized wave functions are:

61 (x4, X5) = % [6a(xa)08(x5) £ da(xe)da(xa)] = \2¢A(xA)¢B(xB).

When swapped, we have:

b+ (xB,xa) = i\%ﬁbA(xA)QSB(XB)-
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Concluding Probability Expression for Distinguishable Particles

Simplifying the Probability Expression: Substituting ¢4 (xa,xg) and ¢4 (xp,xa) into the
probability equation:

1 1
4P = s  3loaxa)oa(xe) + 5 08(xe)oa(xa)F)
This expression simplifies to:

dP = d3x4d3xz|pa(xa) [} 05 (x8)|2.

Conclusion: This probability matches the one for distinguishable particles, indicating that in
situations where wave functions do not overlap, identical particles can be treated as
distinguishable. Thus, there is no need for symmetrization or antisymmetrization in such cases.
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Occupation Numbers
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21.8 Occupation Numbers

Consider a system of N identical particles, each living in a vector space V. The N-particle
quantum system lives in V&N,
m If the particles are bosons, the states lie in Sym" V.
m If the particles are fermions, the states lie in AntiV V.
m To construct symmetric andAantisymmetric states, we can start with a basis state in V&N
and apply the symmetrizer S or the antisymmetrizer A.
m Many different basis states in V®N can lead to the same state in Sym™ V or AntiV V after
applying the projectors.
m The states in Sym"™ V and Anti¥ V/ are thus long lists of superpositions of basis states.

Why Use Occupation Numbers:
m Occupation numbers provide an economical yet complete way to specify states in Sym™ V
and Anti" V.
m They help distinguish basis states in V®N that, after symmetrization or
antisymmetrization, are linearly independent.
m Occupation numbers give a simplified description of the physical states.
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21.8 Occupation Numbers (continued)

Formal Definition:
m Let {|u;)} with i =1,2,... form an orthonormal basis of V: V = span{|u1), |u2),...}.

m For the N-particle system, basis states in V&N take the form:
|uf1>(1) ® |uf2>(2) ®--® |qu>(N)7
where i1, ..., iy can take any values in the list of basis state labels of V.

Assigning Occupation Numbers:
m For any basis state |w) € VN, we assign a set of occupation numbers {n1, np,...} where
n; > 0.
m The integer n; denotes the number of times |u;) appears in the basis state |w):

ur),|u2), - fui),
ny ny n;
m By inspecting |w), all occupation numbers ny, np, ... can be identified.

m The list of the nonzero occupation numbers is finite and has at most N elements because
we are describing states of N particles.
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Example (two particles in a three-state system)

Occupation numbers for two particles in a three-state system.

To illustrate the use of occupation numbers, consider:
m A single-particle state space V with three basis states |u1), |u2), and |u3).
m Two particles, so that N = 2.
m There are nine basis states for V ® V = V&2,

For any basis state, we define three occupation numbers forming a list {n1, n2, n3}, with
n; € {0,1,2}, indicating how many particles are in |u;).

Same States for both particles:
m If both particles are in the same state, we have the following basis vectors:
lu)(1) @ |u)(2) = {2,0,0},  [w2)1) @ [t2)(2) = {0,2,0}, |uz)(1) ® |u3)(2) = {0,0,2}.

m These basis vectors are symmetric under the transposition (12), hence suitable for
representing bosons.
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Example (continued)

Different States for Each Particle:
m If the two particles are in different states, the occupation numbers are:

lu1) (1) @ [t2)(2), [U2) (1) ® |u1)(2) = {1, 1,0},

lu1) (1) @ [us)(2), [U3) 1) @ |u1)(2) = {1,0,1},
lu2) 1) @ |us)(2), [U3) (1) @ |u2)(2) = {0,1,1}.
m Each line shows two V ® V basis states with the same occupation numbers due to
exchange degeneracy.
m For bosons: Pick symmetric superpositions on each line to get three states in Sym?V.
m For fermions: Pick antisymmetric superpositions on each line to get three states in
Anti?V.
m While there are a total of nine basis states in V' ® V/, there are only six possible sets of
occupation numbers.

m All six can be used to describe states of bosons. Only three can be used to describe states

of fermions
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Example (continued)

Pictorial Representation:

m For basis states |u1), |u2), and |u3), we use three lines:
m The lowest line for |uy),
m The middle line for |uy),
m The top line for |us).

|“3> > C £
lu) S S/ S
|“1> = < <

(2,0,0} {0,2.0} {0,0,2} (1,1,0} (1,0,1} {0,1,1}

Figure: Two particles in a three-state system. The three levels are indicated by horizontal lines,
and the particles are shown as small circles. There are six possible sets of occupation numbers.

m Each state is represented by a small circle at the corresponding level. Figure illustrates six
configurations for possible occupation numbers:

m All six configurations represent states for bosons.
m Only the last three configurations represent states for fermions.
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Occupation Numbers and Basis States

General Situation:
m Each basis state [w) € V®N and the state obtained by acting with a permutation

operator have exactly the same occupation numbers.
m Two basis states in V®N with identical occupation numbers can be mapped into each
other by a permutation, leading to the same state in Sym™ V or in AntiVV (up to a sign).
m States with different occupation numbers cannot be permuted into each other, hence
defining unique states in Sym™V and AntiVV.
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Defining Symmetric States

m Given a basis state in VOV, the associated symmetric basis state can be labeled by
occupation numbers {ni, ny, ...}.

m Occupation numbers must add up to N:
|ni, np,...), € SymMVv, ni>0, Zn,- =N.
i
m The symmetric state is constructed as:

In,m, .. )e = csS(lun) . ) @ ) .. w) @+ ),

ny times ny times

where cs is a normalization constant.

m More briefly, the symmetric state is given by:

‘nla np,.. '>5 = CS§ (‘U1>®n1 & ‘U2‘®n2 X - )
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Defining Symmetric States (continued)

Orthogonality of States Defined by Occupation Numbers:

m States in Sym" V/ defined by different occupation numbers are orthogonal:
5(”17 n/27 R |n17 n,.. '>S = 5n1,n16n2,n§ Tt

m The space SymNV is spanned by all possible occupation numbers:

> ni=N,n zo,\ﬁ}.

1

Sym™ V = Span {nl,ng,...)s

87 / 98



Defining Antisymmetric States

Construction of Antisymmetric Spaces:
m For fermions, no occupation number can exceed one due to Pauli's exclusion principle.

m Orthonormal basis states in Anti¥V are defined as:

im0 = caA (Ju)®™ @ w)®™ @), ne{0,1}, Y m=N,

Any state with an occupation number two or larger is killed by A, because it cannot be
antisymmetrized.

m These states indeed satisfy

o _
A <n1,n2,. . | nl,ng,...>A = 5,717,,15”2’"5 .

m The space relevant to identical fermions is

AntiV V = Span {|n1, n,...)a

> ni=N,n€ {0,1},v,'}.
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Axioms of Quantum Mechanics
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m Let us now state the axioms, denoted as Al, A2, A3, and A4, valid for any isolated
quantum system

m The axiomatic formulation described below follows the Copenhagen interpretation of
quantum mechanics developed by Bohr, Heisenberg, and others. Perhaps one day it will
be improved and replaced with a less mysterious one, but to date, this formulation is
consistent with all known facts about quantum mechanics.
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Al. States of the system

The complete description of a quantum system is given by a ray in a Hilbert space .

Remarks:

m A ray in a vector space is a nonzero vector |W) with the equivalence relation |W) ~ c|V)
for any nonzero ¢ € C. Any vector in this ray is a representative of the state of the
system. The vector |V) is also called a wave function.

m Affirming that the state gives a complete description of the system, the axiom implies
that the state describes the most that can be known about the system.

m The state |V) of the system has a representative with unit norm. This representative is a
normalized state or wave function.

m However complicated the quantum system and however many particles it contains, just
one state, one wave function, represents the full quantum state of the system.
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A2. Observables

Hermitian operators on the state space H are observables.

Remarks:
m An observable of a system is a property of the system that can be measured. This
postulate says that such properties arise from Hermitian operators.
m The spectral theorem (section 15.6) implies that any observable A = AT can be written as
the sum:

AA = ZakPk (29)
k

where the sum runs over all the different eigenvalues aj of A, and the Py are a complete
set of orthogonal projectors into the corresponding eigenspaces.
m The projectors Py satisfy:

PI = Py, PP =04Pk, Z Pr=1
k
m If an eigenvalue is nondegenerate, the associated projector is rank one. If an eigenvalue
has a multiplicity / > 1, the associated projector is rank / and projects into an

I-dimensional eigenspace.
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A3. Measurement

Let Py, with Kk =1,..., denote a complete set of orthogonal projectors, and let H denote the
subspace Py projects into. Measurement along this set of projectors is a process in which the
state W is projected to H, with probability p(k) given by

p(k) = (V[P W) = || Pi|w) .

The normalized state after measurement is

P|V)

1PV

Measuring an observable Ais measuring along the complete set of orthogonal projectors
associated with its spectral decomposition (29). The probability p(k) for the state to be
projected to Hy is the probability of measuring a.
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A3. Measurement (Remaks)

m Measurement of an observable is a nondeterministic physical process. We cannot in
general predict the result of the measurement, just the probabilities for the various
possible results.

m The measurement axiom does not give any prescription for measuring the state W itself.
The state is the full description of the system, but it cannot be directly measured. We
can only measure observables, and such measurements give us some information about
the state.

m The probabilities p(k) add up to one, as they should. Using the completeness of the set
of projectors, we find

D_p(k) =D (V|P|W) = w|(ZPk>|\v (VW) =1.

k k
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A3. Measurement (Remaks)

m When measuring A, if the eigenvalue ay is nondegenerate with eigenvector |k), then
Py = |k)(k|, and the probability p(k) is

p(k) = (W[k) (kW) = [(k|W)[2.

m If the eigenvalue ay is degenerate with multiplicity /, the associated eigenspace is spanned
by / orthonormal eigenvectors |k; 1),...,|k; /), and

/

Pi=_lkii)(kiil,

i=1

/ /
(Z V|k; i) (k; /|w> Z|(k;i|w>]2.

i=1
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A3. Measurement (Remaks)

m Measurement along an orthonormal basis {|/)} means measuring along the complete set
of rank-one orthogonal projectors P; = |i){il.
m The probability p(i) of being found in the state |i) arising by projection via P; is
. W . 2
p(i) = (WD (W) = [(IW)°.

m When we say we are measuring an orthogonal projector P, we mean treating P as a
Hermitian operator, with eigenvalues one and zero.
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A4. Dynamics

Time evolution is unitary: given any state |V, ty) of the system at time ty, the state |V, t;)
time t; is obtained by the action of a unitary operator U(t1, to):

‘\U, t1> = U(tl, to)’\u, t0>.
Remarks:

m Time evolution is deterministic: if the state is known exactly at some time, it is known
exactly at a later time.

m The same operator U(t1, ty) evolves any possible state of the system at time tp.

m Unitary time evolution means the state satisfies the Schrodinger equation
ih%]llﬁ = H|W) with H as the Hamiltonian, a Hermitian operator with units of energy.

m Thus, axiom A4 implies that any quantum system has a Schrodinger equation that
controls the time evolution of the wave function.

at
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Composite System and Symmetrization Postulate

In setting up certain quantum mechanical systems, two guiding principles are useful but don’t
directly follow from the four axioms:

m P1. Composite System Postulate:

Assume system A has a state space H 4, and system B has a state space Hpg. The state
space of the composite system AB is the tensor product Ha ® Hp. If system Ais in |[W4)
and system B is in [Wg), then the state of AB is [W4) ® |[Wg).

m P2. Symmetrization Postulate:

For a system with N identical particles, the physically realized states are either totally
symmetric (bosons) or totally antisymmetric (fermions) under particle exchange.
Additional Notes:

m The composite system postulate (P1) facilitates the implementation of Axioms Al to A4
for composite systems.

m The symmetrization postulate (P2) resolves the problem of exchange degeneracy. In fact,
this postulate is proven in relativistic quantum field theory under some weak set of
assumptions.

® In quantum systems with two spatial dimensions, particles that are neither bosons nor
fermions can exist.
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