



































































































































1 Classical Field Theory

1 I Lagrange formalism for particles

Classical mechanics

Lcqn In Lagrange function I assume no explicit time dependence

En n 1 N generalized cooridinates

Sign Sj Lc facts facts dt Action
Functional of orbits quit with
fixed starting and endpoints

qn ti Gnats

Equation of motion followsfrom the action principle Theorbit taken

by the physical system is the one where theaction is stationary

8 Sign 0

This implies the Euler Lagrange equations

de at
sqn

0

Reminder

sign SI EntSqn sign
yi

t

quit squats
Side sent sein

Sqn 88m

I 8nF Set g g soon I o

Tee
squat squat o

For arbitrary Sqn this implies the E L equation






































































































































Transition to the Hamiltonian

cannonically conjugate momenta Pn Ot
Ofa

ex

Then Heqn Pu I PuGn Li GnGn

En EnC En Pu by solving x for Gn

The canonical coordinates fulfill the equations

qn Jim p Sum En Emp Jon Pm p o

gin fu H p
OH Poisson bracket
2pm

que
A B p gugu 31 8join you H p

OH

Canonical quantisation

LcGnGn given Interpret qu.qi.ph as operators on a Hilbertspace

Impose the commutation relations

I 8h Pm 2gum

I t I

I 8h Gm I youpm so

c at a fixed time

The time evolution of the operators is

gin I I fn H

Note simply p I I J






































































































































A field is a quantity defined at every point of space and time ce e

Pc I ei L
g

NOTE theconcept of position hasbeen relegated from a dynamical

An example E M field

Electric field ÉCI t
Magnetic field Beg

spatial 3 vectors

derive these two 3 vectors from a single 4 component field

Alec I t C 4 As I ee e 1.2.3

I
a vector in spacetime

The electric and magnetic fields are

to É and B xx






































































































































The dynamics of thefield is governed by a Lagrangian

In relativistic QFT one assumes that L is an integral over Lagrangian density

L Sd't Ic Inco I daises Inca

Sd't Le Onyx Tacos

M
all at one space point local

It is difficult to construct non local Lagrangians which are compatible with relativistic

causality

E L equation

Ss of e Lion audu

fax InSdn of
Honda

8124ns

Integration by parts and
2pmassume Ionia so for ie a

a go K

Canonically conjugated fields Tinix
Of

aloofness

Hamilton density
H ISd'tTaco204ns Sd't I fax Hex
Hex InTin204m L






































































































































Suppose space were discrete with points I on a lattice then there is a set

In cts of cannonical coordinates and theprevious discussion applies with substitutions

quits oh ee factÉ fix

I I Efate
Snm SnmSey Enns I y
Legnces Ence L Gnats Gnats Is On in Dufner

Cannonical quantization

Impose the equal time commutation relations

I fact I Timetry i 8mm8 s y

I YnetR Gmt.si TinctR TLmct.gs 0

The E L eqution is equivalent to the Heisenberg equation

In it I t.IOnct.R H

for the field operator The formal solution is

fact I e toneo s e
t

I Since it does not
explicitly depend on t

NOTE If thecommutation relations are imposed at one time

they are preserved at all times

I JustIs Tinct Is e
t't to

facto e
it't to

e
t't to

pm to e
that tos

e
t't to I Ion to I Tomato e

Hot to

Foia
isms I y

Unless otherwise mentioned one uses the Heisenberg picture in QFT

where the time dependence is in the operators not the states










































An Example The Klein Gordon Equation

consider L for a real scalar field 4cL t

I Ignuampoup Imig

I É Ic Ep d n

tiluse the Minkowski space metric guv guv

we identify the kinetic energyof thefield as

T Sd'x to
thepotentialenergy as

Y Sd's IIc pi't'sm'd

gradientenergy true potentialenergy

To determine the equation of motion c Eon for4 we compute

2

op m'd and 2
acoup 24 E C4 xp

The E L equation is then

g p'd my o or among m'd o

Klein Garden Equation

If we consider the Lagrangian with general potential 44

I tampon yep among o



Klein Gorden Equation

Schrodinger eqn it 41st 2 Im5415 t

Hamiltonian H É
For therelativistic motion

H d p c mic me t t t

I
rest energy nonrelativistic Hamiltonian

Then the Schrodinger eqn can be written as

it 412 t J c x mic 412 t

I square the differential operators on each side

22 4 I t C Ece't mic 4 I t

I 2 C I

4 a'y my o or gory n 4 0

K G wave function 4ft I is a Lorentz invariant function

Since 141 is also invariant this cannot represent a probability density

A density transforms as time like component of a 4 vector due to

Lorentz contraction of volume element

One candefine
g m 4 4 4 4

5 Im 4 84 8454

follow a continuity equation If F I o e qjr o

However f is not necessarily positive I unlike 141 Therefore it

may well be considered as the density of a conserved quantity the electric

charge e.g but not as a positive probability



The 2nd problem negative energy solution

plane wave solution y it I N e
ie Et FK

E 151 t m E Him
The spectrum is no longer bounded frombelow



E.g Maxwell's Equations

From the Lagrangian d Juhu 2mA Il onAug

NOTE L has no kinetic term As for Ao

we compute
as

acoma admit I I d Ap2pA g g t's anApagargeagre

a sua 818s I 8485dgArg got I daap.jo geagop

I 82ofa Argedgos I anAp8585g got

I amA I amA t I 2gAlge I 2nA gun

MAY 2galguv
Then we have

anI
21

scamAT
2 A t 2 a AS

2nF onAV 20AM 2nF'd
where the field strength is definedby

Fun OrAv O Am

Using FMV the Maxwell Lagrangian is

I FmoFmv



1.3 Noether theorem for fields

The Noether theorem establishes a relation between symmetries and conserved

quanties

There is no difference between classical and quantum field theory pox can be

a classical field or quantum field operator

Sty Sdk Lc Y any
A symmetry is a transformation of the fields which leaves action invariant

fix yes e Fix e E a constant globalsymmetry
F depends pix and apex

0 SS e fay ISISSpix
Fix

before the e o m are staisfied

Example translation

Y'as yentas goes amongst t
a n E

any r F

Noether theorem For every continuous symmetry there is a conserved

current

jacks jaggyFox Knox I amjurors o

and charge Q fatejocx I o

Derivation

Since the action Siya is invariant by assumption I can only change

by a total derivative i e

85 ESdtx JeKines cis

for some Knox In particular khz o if I is invariant not only 5193



On the other hand

EFox EdmFox
iiiuse E L equation to eliminate of ay then we have

SS Sdk EFox or gg gg Eaten

Taking ca minus sis gives Jujuy so for juries as defined above

Also

g fate 20jocks
ang

de I jus o

5
assuming as usual
that thefields vanish
as III re

NOTE Theconservationof the current is only true for the fields satisfying the

field equations because the EL equation was used to obtain ca

In particular in the quantum theory this will not be true of

every field configuration we sum over in the path integral only

the saddle point configurations



Anexample TranslationandtheEnergy Momentum Tensor

Considerthe infinitesimal translation

x su gu loners Onex tautness

Lex Lex t E'd Six a 821stLex

Thenfourconserved currents c juju oneforeachof E u o 1 2,3

ja
2

Scanlon 209 8TLix Tie

Energy Momentum tensor

It satisfies out 0

Four conserved quanties are givenby

E fax Too pi fax Toi
i

the totalenergyof the thetotalmomentum

field configuration

An example thescalarfield theory I Ioutano Im'd

TM supsup guvs

Using E O N for4 c o'tm's4 0 onten o

onTV on 2424 SL

5454 andarctos o Isidoro Im'd's

m'd54 andJuco'd I scout and I supokay

n'to'd
o

the conserved energy E fax I É Is 4 t Im'd

momentum pi Sd'x ofaid



1 4 Lorentz transformation

Lorentz invariant is symmetry under rotations and boosts

The rotation groups soon

Eg Two dimensional rotation

cost sino
f sing cosy Y

The line element de in the physicalspace IR measuring thedistance

between any two points I and It de

de dx do dog doitdy dz

which is invariant under linear transformations

I I RI

R orthogonal matrices R RT RT R 13

Thus det R I proper orthogonal transformations

rotations in the physical space

det R 1 improper orthogonal transformation

such as space reflection

The set of all proper orthogonal transformations form the group of

rotations denoted by 5013

S special detR 1

The set of all orthogonal transformations formgroup 013

5013 is a subgroup of 013



Thebasicdefinition of group

A set G a b c is called a group under the operation of

multipication denoted if the following axioms hold

lil G is closed under the operation a It II closure

If a b e G then a b e a

giii a b c f a b c forevery a b C E I SEE's Associativity

Ciii F e e G such that a e e a a for Hae G c his Identity

civ For Hae G I a E G such that a a a l a e tht Invertibility

Isomorphism Twogroups G and G are said isomorphic if there exists a

FFA one to one correspondence between theirelements which preserves

the law of groupmultiplication

If gie a a gie a and gga g in G thengigs g in G

and vice versa

Homomorphism A homomorphism from a groupG to another group a is a mapping

BE
not necessarily one to one which preservesgroup multiplication

If gie a gie a andgigs g then gig g

Clearly isomorphism is a special case of homomorphism I 22937



Representations of a Group

If there is a homomorphism from a groupG to agroup of operators

Usa on a linear space 11 we say that Usa forms a representation of the

group G

The dimension of the representation is the dimension of the vectorspace 11

A representation is said to befaithful if the homomorphism is also an

isomorphism i.e one to one

The representiation is a mapping g Ea t Ucg

where Ucg is an operator on V such that Ucg Vega Ucg

Usatisfythe same rulesofmultiplication

Consider the case of a finite dimensional representation Choose a set of basis

vectors Es i i in on 11 The operators are then realized as nxn

matrices Dogs as follows

Ucg leis leg Dog i g e G

Vig Vega leis Ucg leg Dog Ji ter Dog j Diga i

U c g ga leis ter Dag g ski

Since ei from a basis Dag Dega Dogga

thematrix multiplication is implied

Thegroup of matrices DCG forms a matrix representation of G



connected Lie group Important in physics

Groups of transformation Ties that are described by a finite set of

real continuous parameters say 09 with each element of thegroup connected

to the identity by a path within thegroup

Multiplication law TIE Tie To 18,0

yalE O a function of the Es and Os

Taking 09 0 as the coordinates of theidentity then

f O O faco O Ga x

I
Ti o TCO TCO Ta fi o G

The transformations of Tca must be represented on the Hilbert space

by unitary operators Us Tie E Identity operator U I is unitary linear

At the finite neighborhood of the identity

TCG It iGata t I Obo tbc t

operators

7

ta Hermitian the tab

suppose that the Us Ties form an ordinary representation

U TIE UCTIG UCTCSCEG

Expanding in power of Ga and Ea

f G E G t Ea t fab oboe

real coeficients
No O or E since x



Then

LHSof xx It i Eata t I ébÉ the I It ie tat job the

I i c Eat 09 ta É Obtats jobE tbc Igbo'tbe t

RHSof It i facE G ta t I fbCÉG JEE G the
I i c o't Ea t fab Eba's ta t I c abtEbt ca't Eat Jtbc

It is 09 Eat fab 8be ta I Gbe t oboistEb t oboe the

Theterms of order 1 G E G E automatically match from EO terms

we have

ta tb ifcabto t tab

Since tab tba then

ta tb if abt tata if'bate

Ita tb i f flab fba to

i c'ab to Lie algebra

Note Suppose that fate E 09 t É t Eg translations in spacetime

Then f be vanish so I ta tb o e Abelian

In this case for any integer N

Ucty
Ui Tc t Es Us Tcas

Let N x keep the 1st order term in UcTia

UI TCG If i t Gata

exp e i ta o



Lorentz Invariance

Among the most important symmetries of relativistic QFT are those

which arise from the Lorentz transformations themselves

The spacetime interval Is

Is gundotdot

guv guv t inverse of guv

o t o oa a
o o o l

Any coordinate transformation xd x'd that satisfies

guvde'rdx gro dude or guv3 33 gyo
is linear

x'd No x t am

I arbitrary constants

a constant matrix satisfying guvNgn't ggr it

These transformations form a group

see xd 9 x'm t.at jim

then x r e Iif x'star Ing intosit at t at

I IngNu x't c try altar
p

If 11 I satisfy x then so does In

The transformation Tin a indued on physical states satisfy

Ts T E T A a Te IA Tata

Taking the determinant of x gives i det115 1 so Nu has an inverse

in to Not gurgling



See

My 11 s guv 9g a guvNo Aur

satyrguv 112 9go
at a p g

t define ago au

guv gerMuro Noun

I raise u on the both side

81 NorNo

Compare this withthedefinition of the inverse transformation A

11 A I or NM 15 81

4 4 indentity matrix

N 1 o A a Joi Mio No 15 1.2 3

The wholegroup of Tin as is Poincaré group

If am o Ten o know as homogeneous Lorentz group

Eg A rotation by O about the x axis

o o

b d

r ar o o

Mu
o so sin

noto sine core i
o o i o

I with r
1

di v2

Note Poincaré group TAPE FATE IT EFF11771747113.3847HilbertEia

Jax ER 4 4KEPI



L has four components each of which is connected in the sense that

any one point can be connected to any other but no Lorentz

transformation in one component can be connected to another in another

component

Note that det X and sgnNo are both continous functions of Nu

Furthermore det 11 Il and No 31 or No E I

See ATG A a

det1 ATG T detG I t deta Ix C i

det A I t det At dee 11

del IA B detca det B

guv Ma Npgap

go NaNp gap Nott Ni Nj g's
1 No It I 11 5
1118531

Thus det A and sgnNo must be constant on any one component

The four possibilities are

24 det A 1 sgnNo I which contain I

LI det 11 1 sgnNo I which contain Is

It det 11 I SgnNo I which contain Ist

24 det a 1 sgnNo I which contain It



The Lorentz transformation

Is a space inversion I REF

Is x 10 Xo Isa Xi 5 1 2.3

It c time inversion at Kif

1 It x Xo Itis x is 1 2.3

Ist i space time inversion AF'dKitt

1 Ist si X Is It X

Clearly It Lt

Lt It Lt

Lt Ist L

The important subgroups of L

L Lf U LI the orthochronous Lorentz group IAF 11003 1

It Lf U Lt the proper Lorentz group I't det11 1

Lo Lf U Lt the orthochorous Lorentzgroup 138 sgnNodetail

If the proper orthochronous Lorentz group

or the restricted Lorentz group



Classical field theory

Scalar field does s fix pin x

Vector field Amex 117Avca x

Eg The Klein Gorden field

apex s 24CA x a Jun dup a x

Andcoup c a x

Eu go Y y casuasi

IyoChiu

Thederivate terms in the Lagrangian transformas

derives Judex Judasguv Ant11512,4cy dopey guv

got agency I doglegs
deriv y

Thepotential terms transform in thesame way fix says then

S Sd x Sexy fax say Say I Say

SaltyLey IdetA I



Quantum Lorentz Transformation The Poincaré Algebra

For an infinitesimal inhomogeneous Lorentz transformation

No 81 who am Em

Then we have

guv gyri of w 8 WI

gun t Wau t Wun t Ocw
in

9mW

Wmv Wun antisymmetry 6 independent components

4 components of Em

An Poincaré transformation is described by 6 4 10 parameters

The transformation Tin a induce a unitary linear transformation in the Hilbert

space
14 U N a 14

The operators U satisfy

Uc I a UCA a Uc In Tata

choose Uc I o A unit operator

The
Uc it w e It jingo Jet ie pl t

W E independentoperators

Since Uc it w e be unitary JS and Pl must be Hermitian

Jett JST pet pl
p pi momentum operator

we choose yer go

Hamiltonian

since w is antisymmetric J's angularmomentum
i j 1.2.3



Lorentz transformation of Jer and Pl

Uc A a JSTU s a a AusAfc Jmu areput a Pr

U c n a Pl U A a Autpm

Then if all o JMU is a tensor PM is a vector

if 1190 81 apure translations Pl is invariant but JT is not

Lie algebra of the Poincaré group

I I JM JST gotJur gu Jor grugru gouger
II PM JST gulps grope
I pm DS J 0

conserved operators commute with Po H

P f p p P J 523 531 J Po

not conserved operators

12 J J J c do not use k to label physical state

Pure translation TC I a subgroup of Tc A a

Tat Es Tel a Tcl It 9

Uc I a e
i Pran

space time translation on the fieldoperator I

e
it f o e fix

A rotation Re by an angle 101 around thedirection of G

Uc Ro o e it


