- 1. Classical Field Theory.
- 1.1 Lagrange formalism for particles

Classical mechanics

L(8n, g_n) Lagrange function [assume no explicit time despendence] gn n=1,...,N generalized coordinates

$$S[gn] = \int_{t_1}^{t_2} L(gnct), gnct) dt$$
 Action

Functional of orbits $gn(t)$ with fixed starting and end-points

 $gn(t_1)$, $gn(t_2)$

Equation of motion follows from the "action principle". The orbit taken by the physical system is the one where the action is stationary:

This implies the Euler-Lagrange equations

For arbitrary

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{g}_n} - \frac{\partial L}{\partial g_n} = 0$$

Reminder:

$$SS[g_{n}] = S[g_{n} + Sg_{n}] - S[g_{n}]$$

$$= \int_{t_{1}}^{t_{2}} dt \left(\frac{\partial L}{\partial g_{n}} Sg_{n} + \frac{\partial L}{\partial g_{n}} Sg_{n}\right)$$

$$= \left[\frac{\partial L}{\partial g_{n}} Sg_{n}\right]_{t_{1}}^{t_{2}} + \int_{t_{1}}^{t_{2}} \left(\frac{\partial L}{\partial g_{n}} - \frac{d}{dt} \frac{\partial L}{\partial g_{n}}\right) Sg_{n} \stackrel{!}{=} 0$$

$$= 0 \quad \text{since}$$

$$= Sg_{n}(t_{1}) = Sg_{n}(t_{2}) = 0$$

8gn this implies the E.L. equation

Transition to the Hamiltonian:

cannonically conjugate momenta
$$Pn \equiv \frac{\partial L}{\partial \dot{q}_n}$$
 (*)

Then

The canonical coordinates fulfill the equations

$$\{g_n, p_m\}_p = S_{nm}$$

$$\{g_n, g_m\}_p = S_{nm}$$
 $\{g_n, g_m\}_p = \{g_n, g_m\}_p = g_n$

$$g_n = \{g_n, H\}_p = \frac{\partial H}{\partial p_n}$$
 Poisson bracket

$$\dot{p}_n = \left\{ p_n, H \right\}_p = -\frac{3H}{38n}$$

$$\{A,B\}_p = \frac{\partial A}{\partial g_n} \frac{\partial B}{\partial g_n} - \frac{\partial A}{\partial g_n} \frac{\partial B}{\partial g_n}$$

Canonical quantisation

LCgn, gn) given. Interpret gn. gn, the as operators on a Hilbert space.

Impose the commutation relations [t = 1]

cat a fixed time)

The time evolution of the operators is

$$g_n = \frac{1}{2} [g_n, H]$$

Note: simply f, $f \rightarrow \frac{1}{t} \Gamma$, J

- 1,2 Lagrange formalism for fields
 - A field is a quantity defined at every point of space and time (\vec{x},t) $\phi(\vec{x},t)$

NOTE: the concept of position has been relegated from a dynamical variable in classical mechanism to a mere label in field theory

· An example: E-M field

Electric field: $\vec{E}(\vec{x},t)$ } spatial 3-vectors Magnetic field: $\vec{B}(\vec{x},t)$

derive these two 3-vectors from a single 4-component field

 $A^{\mu}(\vec{x},t) = (\phi, \vec{A})$ [$\mu = 0,1,2,3$]

a vector in specetime

The electric and magnetic fields are

 $\vec{E} = -\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t}$ and $\vec{B} = \nabla \times \vec{A}$

The dynamics of the field is governed by a Lagrangian

In relativistic QFT one assumes that L is an integral over Lagrangian density

$$L = \int d^{3}\vec{x} \quad L(\phi_{n}(x), \vec{\phi}_{n}(x), \dot{\phi}_{n}(x))$$

$$= \int d^{3}\vec{x} \quad L(\partial_{\mu}\phi_{n}(x), \phi_{n}(x))$$

$$\uparrow \quad \text{all at one space-point: local}$$

It is difficult to construct non-local Lagrangians, which are compatible with relativistic causality.

E. - L. equation:

$$SS = \delta \int dt d^{3}\vec{x} \qquad \hat{L} (\phi_{n}, \partial_{\mu}\phi_{n})$$

$$= \int d^{4}x \left[\frac{\partial \hat{L}}{\partial \phi_{n}} \delta \phi_{n} + \frac{\partial \hat{L}}{\partial (\partial_{\mu}\phi_{n})} \delta (\partial_{\mu}\phi_{n}) \right]$$
Integration by parts and
$$\int \partial_{\mu} \left(\frac{\partial \hat{L}}{\partial (\partial_{\mu}\phi_{n})} \right) - \frac{\partial \hat{L}}{\partial \phi_{n}} = 0$$
assume $\phi_{n}(x) \to 0$ for $|\vec{x}| \to \infty$

Canonically conjugated fields: $\pi_n(x) \equiv \frac{\partial L}{\partial (\partial \phi_n(x))}$

Hamilton density:

$$H = \sum_{x} \int d^{3}x \, \pi_{n}(x) \, \partial_{0} \phi_{n}(x) - \int d^{3}x \, \mathcal{L} = \int d^{3}x \, \mathcal{H}(x)$$

$$\Rightarrow \mathcal{H}(x) = \sum_{x} \pi_{n} \, \partial_{0} \phi_{n} - \mathcal{L}$$

Suppose space were discrete with points \vec{x} on a lattice, then there is a set $\phi_{n,\vec{x}}(t)$ of cannonical coordinates, and the previous discussion applies with substitutions

$$\begin{cases} \varphi_{n}(t) \rightarrow \varphi_{n}, \vec{\chi}(t) \rightarrow \varphi_{n}(t, \vec{x}) = \varphi(x) \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} \rightarrow \vec{\chi}_{n} & \vec{\chi}_{n} \\ \vec{\chi}_{n} & \vec{\chi}_{n} &$$

Cannonical quantization

Impose the equal-time commutation relations

The E.L. equation is equal-valent to the Heisenberg equation

$$\dot{\phi}_{n}(t,\vec{x}) = \frac{1}{i} [\phi_{n}(t,\vec{x}), H]$$

for the field operator. The formal solution is

$$\phi_n(t, \vec{x}) = e^{iHt} \phi_n(o, \vec{x}) e^{-iHt}$$
 I Since H does not explicitly depend on t.]

NOTE: • If the commutation relations are imposed at one time,

they are preserved at all times

• Unless otherwise mentioned one uses the Heisenberg picture in QFT, where the time-dependence is in the operators, not the states.

An Example: The Klein-Gordon Equation

consider L for a real scalar field $\phi(\vec{x},t)$

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^{2} \phi^{2}$$

$$= \frac{1}{2} \dot{\phi}^{2} - \frac{1}{2} (\vec{\nabla} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2}$$

use the Minkowski space metric $g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} +1 \\ -1 \\ -1 \end{pmatrix}$

we identify the kinetic energy of the field as

$$T = \int d^3x \, \frac{1}{2} \, \dot{\phi}^2$$

the potential energy as

$$V = \int d^{\frac{3}{2}} \left[\frac{1}{2} (\vec{\nabla} \phi)^{2} + \frac{1}{2} m^{2} \phi^{2} \right]$$
gradient energy "true" potential energy

To determine the equation of motion (EOM) for ϕ , we compute

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^2 \phi \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial (\partial \mu \phi)} = \partial^{\mu} \phi \equiv (\dot{\phi}, -\nabla \phi)$$

The E.-L. equation is then

$$\dot{\phi} - \nabla^2 \phi + m^2 \phi = 0$$
 or $\partial_{\mu} \partial^{\mu} \phi + m^2 \phi = 0$

Klein-Gorden Equation

If we consider the Lagrangian with general potential V(4)

$$\Gamma = \frac{3}{7} \vartheta^{\mu} \varphi \vartheta_{\mu} \varphi - \lambda(\varphi) \Rightarrow \vartheta^{\mu} \vartheta_{\mu} \varphi + \frac{9 \varphi}{9 \wedge} = 0$$

Klein - Gorden Equation:

Schrödinger egn:
$$i \hat{\mathcal{T}} \frac{\partial}{\partial t} \psi(\vec{x}, t) = -\frac{\hat{\mathcal{T}}^2}{2m} \nabla^2 \psi(\vec{x}, t)$$

Hamiltonian $\mathcal{H} = \frac{\hat{P}^2}{2m}$

For the relativistic motion:

$$H = \sqrt{P^2C^2 + m^2C^4} = mC^2 + \frac{P^2}{2m} + \cdots$$
rest energy nonrelativistic Hamiltonian

Then the Schrödinger egn can be written as $i \frac{\partial}{\partial t} \psi(\vec{x}, t) = \sqrt{-t^2 c^2 \nabla^2 + n^2 c^4} \psi(\vec{x}, t)$ $\downarrow \text{ square the differential operators on each side}$ $- \frac{\partial^2}{\partial t^2} \psi(\vec{x}, t) = (-t^2 c^2 \nabla^2 + m^2 c^4) \psi(\vec{x}, t)$ $\downarrow \hat{x} = c = 1$ $\ddot{y} = \nabla^2 \psi + m^2 \psi = 0$ or $\partial_\mu \partial^\mu \psi + m^2 \psi = 0$

R-G wave function $\Psi(t,\vec{x})$ is a lorentz-invariant function. Since $|\Psi|^2$ is also invariant, this cannot represent a probability density. A density transforms as time-like component of a 4-vector, due to lorentz contraction of volume element.

One can define

$$J = \frac{1}{2m} (4^* \dot{\psi} - \dot{\psi}^* \dot{\psi})$$

$$\vec{j} = \frac{1}{2m} (4^* \vec{v} \dot{\psi} - (\vec{v} \dot{\psi})^* \dot{\psi})$$

follow a continuity equation: $\frac{\partial}{\partial t}g + \vec{\nabla} \cdot \vec{j} = 0 \Leftrightarrow \partial_{\mu}j^{\mu} = 0$ However, g is not necessarily positive (unlike $|y|^2$). Therefore, it may well be considered as the density of a conserved quantity (the electric charge, e.g.), but not as a positive probability.

The 2nd problem: negative energy solution

plane vowe solution: $\psi(t, \vec{x}) = N e^{-i(Et - \vec{p} \cdot \vec{x})}$

L) E = 1812+ m2 ⇒ E = ± √1812+m2

The spectrum is no longer bounded from below.

E.g. Maxwell'& Equations

From the Lagrangian $\mathcal{L} = -\frac{1}{2} (\partial_{\mu} A_{\nu}) (\partial^{\mu} A^{\nu}) + \frac{1}{2} (\partial_{\mu} A^{\mu})^{2}$

NOTE: & has no kinetic term A. for A.

we compute

$$= -\frac{1}{7} S_{W} V_{D} + 9 \delta_{W} \delta_{W} \delta_{W}$$

$$= -\frac{1}{7} S_{W} V_{D} - \frac{1}{7} S_{W} V_{D} + \frac{1}{7} S_{W} V_{D} + \frac{1}{7} S_{W} V_{D} \delta_{W} \delta_{W} + \frac{1}{7} S_{W} V_{D} \delta_{W} \delta_{W} \delta_{W} + \frac{1}{7} S_{W} V_{D} \delta_{W} \delta_{W} \delta_{W} \delta_{W} + \frac{1}{7} S_{W} V_{D} \delta_{W} \delta_{W}$$

Then we have

where the field strength is defined by

Using $F^{\mu\nu}$, the Maxwell Lagrangian is $L=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}.$

- 1.3 Noether's theorem for fields .
- The Noether theorem establishes a relation between symmetries and conserved quanties
- · There is no difference between classical and quantum field theory; your can be a classical field or quantum field operator.

Example: translation

$$p'(x) = p(x+\alpha) = p(x) + \alpha^{\mu} \partial_{\mu} p(x) + \cdots \Rightarrow \begin{cases} \alpha^{\mu} \wedge \xi \\ \partial_{\mu} p \wedge F \end{cases}$$

Noether theorem: For every continuous symmetry there is a conserved current

$$j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial (\partial \mu y(x))} F(x) - K^{\mu}(x) \qquad [\partial \mu j^{\mu}(x) = 0]$$

and charge
$$Q = \int d^3\vec{x} j^{\circ}(x)$$
 [$\frac{dQ}{dt} = 0$]

Derivation:

Since the action $S[y\alpha]$ is invariant by assumption, I can only change by a total derivative. i.e.

$$\delta S = \epsilon \int d^4x \, \partial_{\mu} K^{\mu}(x) \qquad (1)$$

for some $K^{M}(x)$ (In particular $K^{M} \equiv 0$ if L is invariant, not only S[9])

On the other hand

use E.L. equation to eliminate of/ap, then we have

$$= \int d^4x \, \epsilon \, \delta_x \left[\frac{\partial (\partial_y \varphi)}{\partial (\partial_y \varphi)} \right] + \frac{\partial (\partial_y \varphi)}{\partial (\partial_y \varphi)} \, \epsilon \, \partial_x F(x)$$

Taking (2) minus (1) gives desjinct = 0 for jinck) as defined above.

Also $\frac{dq}{dt} = \int d^3\vec{x} \ \partial^\circ j^\circ cx) = -\int d^3\vec{x} \ \vec{\nabla} \cdot \vec{j} cx = 0.$

assuming as usual.

that the fields vanish as $121 \rightarrow 10$

NOTE: The conservation of the current is only true for the field satisfying the field equations, because the E.L. equation was used to obtain (2)

In particular, in the quantum theory, this will not be true of every field configuration we sum over in the path integral, only the saddle-point configurations.

An example: Translation and the Energy-Momentum Tensor.

Consider the infinitesimal translation

$$L(x) \rightarrow L(x) + \epsilon^{\nu} \partial_{\nu} L(x) \longleftarrow \epsilon^{\nu} \partial_{\mu} [\delta^{\nu}_{\mu} L(x)]$$

Then four conserved currents (j/), one for each of E', v= 0, 1, 2, 3

$$(j^{\mu})_{\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{n})} \partial_{\nu} \phi_{n} - \delta_{\nu}^{\mu} \mathcal{L}^{(x)} \equiv T^{\mu}_{\nu}$$

$$\vdots$$
Energy - Momentum tensor
$$1 \in \text{Satisfies} \quad \partial_{\mu} T^{\mu}_{\nu} = 0$$

Four conserved quantities are given by

$$E = \int d^3x \ T^{\circ \circ} \ , \qquad P^i = \int d^3x \ T^{\circ i}$$
 the total energy of the the total momentum

field configuration

An example: the scalar field theory:
$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$$
 $T^{\mu\nu} = \partial^{\mu} \phi \partial^{\nu} \phi - g^{\mu\nu} L$

Using E.O.M. for
$$\phi$$
, $(3^2 + m^2) \phi = 0$, $\Rightarrow \exists_{\mu} T^{\mu\nu} = 0$

$$\int_{a}^{\mu} T^{\mu\nu} = \exists_{\mu} (3^{\mu} \phi^{3} \psi^{6}) - 3^{\nu} (\frac{1}{2} \partial_{\mu} \phi^{3} \psi^{6} - \frac{1}{2} m^{2} \phi^{2})$$

$$= 3^{2} \phi 3^{\nu} \phi + \delta^{\mu} \phi 3_{\mu} (3^{\nu} \phi) - \delta^{\nu} (\frac{1}{2} \partial_{\mu} \phi^{3} \phi^{4} - \frac{1}{2} m^{2} \phi^{2})$$

$$= -m^{2} \phi 3^{\nu} \phi + \delta^{\mu} \phi 3^{\nu} (3^{\nu} \phi^{4}) - \frac{1}{2} \delta^{\nu} (3^{\nu} \phi^{4})$$

$$+ m^{2} \phi 3^{\nu} \phi$$

the conserved energy
$$E = \int d^3x \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} (\vec{\phi} \dot{\phi})^2 + \frac{1}{2} m^2 \dot{\phi}^2$$

... momentum $P^2 = \int d^2x \dot{\phi} \partial^2 \dot{\phi}$

1.4 Lorentz transformation

Lorentz invariant is symmetry under rotations and boosts.

The rotation groups so(n)

E.g. Two-dinensional rotation:

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

The line element dl^2 in the physical space IR^3 , measuring the distance between any two points \vec{x} and \vec{x} + $d\vec{x}$

$$dl^{2} = dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} = dx^{2} + dy^{2} + dz^{2}$$

which is invariant under linear transformations

$$\vec{x}$$
 $\longrightarrow \vec{x}' = R \vec{x}$

$$\hat{\vec{k}}$$

$$R : \text{ orthogonal matrices} \qquad R R^T = R^T \cdot R = 1_3$$

Thus, $\det R = 1$: proper orthogonal transformations rotations in the physical space.

det R = -1: improper orthogonal transformation such as space reflection

The set of all proper orthogonal transformations form the group of rotations denoted by SO(3)

The set of all orthogonal transformations form group 0(3).

SO(3) is a subgroup of O(3)

The basic definition of group:

A set G = [a,b,c...] is called a group under the operation of "multipication" denoted • if the following axioms hold:

- (i) G is closed under the operation "•" (封闭性) Closure If $a,b\in G$, then $a\cdot b\in G$
- (iii) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for every $a, b, c \in G$ (总分律) Associativity
 (iii) $\exists e \in G$ such that $a \cdot e = e \cdot a = a$ for $\forall a \in G$ (单位元) Identity
 (iv) For $\forall a \in G$, $\exists a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$ (逆元) Invertibility

Isomorphism: Two groups G and G' are said isomorphic if there exists a 同构 one-to-one correspondence between their elements which preserves the lew of group multiplication. $\text{ If } g_i \in G \iff g_i' \in G' \text{ and } g_1g_2 = g_3 \text{ in } G \text{ , then } g_i'g_2' = g_3' \text{ in } G'$

Homomorphism: A homomorphism from a group G to another group G' is a mapping 同意
(not necessarily one-to-one) which preserves group multiplication.

If $g_i \in G \rightarrow g_i' \in G'$ and $g_1g_2 = g_3$ then $g_1'g_2' = g_3'$ (learly, isomorphism is a special case of homomorphism. (XX §†)

and vice versa.

Representations of a Group:

If there is a homomorphism from a group G to a group of operators U(G) on a linear space V, we say that U(G) forms a representation of the group G.

The dimension of the representation is the dimension of the vector space V.

A representation is said to be faithful if the homomorphism is also an isomorphism (i.e. one-to-one)

The representiation is a mapping $g \in G \xrightarrow{U} U(g)$ where U(g) is an operator on V, such that $U(g) U(g_2) = U(g_3)$

Consider the case of a finite-dimensional representation. Choose a set of basis vectors $\{\hat{e}_i, i=1,...,n\}$ on V. The operators are then realized as $n \times n$ metrices D(g) as follows:

U satisfy the same rules of multiplication

 $U(g_3) | e_{\hat{i}} \rangle = | e_{\hat{j}} \rangle | D(g_3)^{\hat{i}}_{\hat{i}} \rangle = | e_{k} \rangle | D(g_4)^{\hat{j}}_{\hat{i}} | D(g_2)^{\hat{j}}_{\hat{i}} \rangle$ $= | U(g_4) | e_{\hat{i}} \rangle = | e_{k} \rangle | D(g_4)^{\hat{k}}_{\hat{i}} | D(g_2)^{\hat{j}}_{\hat{i}} \rangle$ $= | U(g_4) | e_{\hat{i}} \rangle = | e_{k} \rangle | D(g_4)^{\hat{k}}_{\hat{i}} \rangle$

Since $\{\hat{e_i}\}$ from a basis, $D(g_1)D(g_2) = D(g_1g_2)$ the matrix multiplication is implied.

The group of matrices D(G) forms a matrix representation of G.

connected lie group Important in physics

Groups of transformation T(0) that are described by a finite set of real continuous parameters, say θ^q , with each element of the group connected to the identity by a path within the group.

Multiplication law: $T(\bar{\theta}) T(\theta) = T(f(\bar{\theta}, \theta))$

 $f^{q}(\bar{\theta},\theta)$: a function of the $\bar{\theta}s$ and θs .

Taking $\theta^a = 0$ as the coordinates of the identity, then

$$f^{q}(\theta, \circ) = f^{q}(\theta, \theta) = \theta^{q} \tag{*}$$

$$T(0) T(0) = T(0) = T(f(0, \theta))$$

The transformations of T(B) must be represented on the Hilbert space by unitary operators U(T(8)). +--- Identity operator U=1 is unitary & linear. At the finite neighborhood of the identity

$$U(T(\theta)) = 1 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

$$0 = 0 + i\theta^{\alpha} t_{\alpha} + \frac{1}{2} \theta^{b} \theta^{c} t_{bc} + \cdots$$

Suppose that the U(T(8)) form an ordinary representation.

$$U(T(\bar{\theta})) U(T(\theta)) = U(T(f(\bar{\theta},\theta)))$$

Expanding in power of θ^{α} and $\bar{\theta}^{\alpha}$

$$f^{\alpha}(\theta, \bar{\theta}) = \theta^{\alpha} + \bar{\theta}^{\alpha} + f^{\alpha}bc \bar{\theta}^{b} \theta^{c} + \cdots$$

real coeficients.

No θ^{2} or $\bar{\theta}^{2}$ since (*)

Then

IHS of
$$(**)$$
 = $\begin{bmatrix} 1 + i \bar{\theta}^{\alpha} t_{\alpha} + \frac{1}{3} \bar{\theta}^{b} \bar{\theta}^{c} t_{bc} \end{bmatrix} \begin{bmatrix} 1 + i \theta^{\alpha} t_{\alpha} + \frac{1}{3} \theta^{b} \theta^{c} t_{bc} \end{bmatrix}$
= $1 + i (\bar{\theta}^{\alpha} + \theta^{\alpha}) t_{\alpha} - \bar{\theta}^{\alpha} \theta^{b} t_{\alpha} t_{b} + \frac{1}{3} \bar{\theta}^{b} \bar{\theta}^{c} t_{bc} + \frac{1}{3} \theta^{b} \theta^{c} t_{bc} + \cdots$
RHS of $(**)$ = $1 + i f^{\alpha}(\bar{\theta}, \theta) t_{\alpha} + \frac{1}{3} f^{b}(\bar{\theta}, \theta) f^{c}(\bar{\theta}, \theta) t_{bc}$
= $1 + i (\theta^{\alpha} + \bar{\theta}^{\alpha} + f^{\alpha}_{bc} \bar{\theta}^{b} \theta^{c}) t_{\alpha} + \frac{1}{3} (\theta^{b} + \bar{\theta}^{b} + \cdots) (\theta^{c} + \bar{\theta}^{c} + \cdots) t_{bc}$
= $1 + i (\theta^{\alpha} + \bar{\theta}^{\alpha} + f^{\alpha}_{bc} \bar{\theta}^{b} \theta^{c}) t_{\alpha} + \frac{1}{3} (\theta^{b} + \bar{\theta}^{b} + \cdots) (\theta^{c} + \bar{\theta}^{b} + \cdots) t_{bc}$
The terms of order $1, \theta, \bar{\theta}, \theta^{2}, \bar{\theta}^{3}$ automatically match, from $\bar{\theta} \theta$ terms

The terms of order 1, θ , $\bar{\theta}$, $\bar{\theta}^2$, $\bar{\theta}^2$ automatically match, from $\bar{\theta}$ θ terms we have

$$-t_a t_b = i f^c ab t_c + t_a b$$

Since tab = tba , then

Note: Suppose that $f^{q}(\theta,\bar{\theta})=\theta^{q}+\bar{\theta}^{q}$ E.g. translations in spacetime Then $f^{q}bc$ vanish, so [ta,tb]=0 ... Abelian

In this case, for any integer N,

$$U(T(\frac{\theta}{N})) \cdots U(T(\frac{\theta}{N})) = U(T(\frac{\theta}{N} + \cdots + \frac{\theta}{N})) = U(T(\theta))$$

Let N -> 10, keep the 1st-order term in U(T(0))

$$U(T(\theta)) = \frac{0}{N+n} (1 + \frac{1}{N} \theta^{q} t_{q})^{N}$$

Lorentz Invariance:

Among the most important symmetries of relativistic GFT are those which arise from the Lorentz transformations themselves.

The space time interval ds

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$g_{\mu\nu} = g^{\mu\nu} \qquad \text{anverse of } g_{\mu\nu}$$

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = G^{-1}$$

Any coordinate transformation $x^{\prime\prime} \rightarrow x^{\prime\prime\prime}$ that satisfies

gus dx'x dx'3 = gus dxxdx or gus
$$\frac{3x^{9}}{3x^{10}} \frac{3x^{10}}{3x^{10}} = g_{90}$$

is linear

$$x''' = \Lambda''' \times x'' + Q'''$$

arbitrary constants

a constant matrix satisfying $g_{\mu\nu} \Lambda''' = g_{\sigma\sigma} (*)$

These transformations form a group

See:
$$x^{\mu} \xrightarrow{(\Lambda,Q)} x'^{\mu} \xrightarrow{(\bar{\Lambda},\bar{Q})} x''^{\mu}$$

then
$$x'''' = \overline{\Lambda}^{\mu}_{f} x'^{f} + \overline{\alpha}^{\mu} = \overline{\Lambda}^{\mu}_{f} (\Lambda^{f}_{3} x' + \alpha^{f}) + \overline{\alpha}^{\mu}$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{\mu}_{f} \alpha^{f} + \overline{\alpha}^{\mu})$$

$$= (\overline{\Lambda}^{\mu}_{f} \Lambda^{f}_{3}) x'' + (\overline{\Lambda}^{h}_{3}) x'' + (\overline{\Lambda}^{h}_{$$

The transformation T(1, a) indued on physical states satisfy

$$T(\bar{\Lambda}, \bar{\alpha}) T(\Lambda, \alpha) = T(\bar{\Lambda}\Lambda, \bar{\Lambda}\alpha + \bar{\alpha})$$

Taking the determinant of (*) gives $(\det \Lambda)^{\frac{1}{2}} = 1$, so $\Lambda^{\mu}\nu$ has an inverse $(\Lambda^{-1})^{\frac{1}{2}}\nu = \Lambda\nu^{\frac{1}{2}} = 9\nu\mu q^{\frac{1}{2}}\Lambda^{\mu}\sigma$

See

raise u on the both side

Compare this with the definition of the inverse transformation Λ^{-1}

4x4 indentity matrix

$$\Rightarrow (\Lambda^{-1})^{M} \sigma = \Lambda_{\sigma}^{M} \Rightarrow (\Lambda^{-1})^{\circ} i = \Lambda_{i}^{\circ} = -\Lambda^{i}_{\circ} \circ (i=1,2,3)$$

The whole group of T(A,a) is Poincaré group

If ar=0, T(1,0) know as homogeneous lorentz group

E.g. A rotation by θ about the x^3 -axis

A boost by v along the x'- exis

$$V_{M}^{D} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 2/3 & 0 & 0010 & 0 \\ 0 & 0020 & -2/3 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$V_{M}^{D} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -4D & 4 & 0 & 0 \\ 4 & -4D & 0 & 0 \end{pmatrix}$$

Note: Poincaré group 不识作用于附空坐标,也作用于物理未说的Hilbert空间.
不仅仅表现为 4×4 矩阵

L has four components, each of which is connected in the sense that any one point can be connected to any other, but no loventz transformation in one component can be connected to another in another component.

Note that det Λ and sgn Λ^o are both continous functions of $\Lambda^M \cup$. Furthermore, det Λ = ± 1 and $\Lambda^o \ni 1$ or $\Lambda^o \in -1$

 $See : \Lambda^T G \Lambda = G$

det $(\Lambda^T G T) = \det G = -1 \qquad \leftarrow \det G = 2 \times (-1)^3$ $(\det \Lambda)^{\frac{1}{2}} = 1 \qquad \leftarrow --- \det \Lambda^T = \det \Lambda \qquad ;$ $\det (A B) = \det (A) \det (B)$

$$g^{\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} g^{\alpha\beta}$$

$$1 = (\Lambda^{\circ}_{\circ})^{2} - \frac{3}{1} (\Lambda^{\circ}_{i})^{2}$$

$$1 = (\Lambda^{\circ}_{\circ})^{2} - \frac{3}{1} (\Lambda^{\circ}_{i})^{2}$$

$$1 = (\Lambda^{\circ}_{\circ})^{2} > 1$$

Thus, det Λ and sgn Λ ° o must be constant on any one component. The four possibilities are

 L_{+}^{\uparrow} : det $\Lambda = 1$, sgn $\Lambda_{\circ}^{\circ} = 1$, which contain 1

 1^+ : det $\Lambda = -1$, sgn $\Lambda^{\circ}_{\circ} = 1$, which contain Is

 $1 + : det \Lambda = 1$, $sgn \Lambda^{\circ} = -1$, which contain Ist

 1_{-}^{+} : det $\Lambda = -1$, sgn $\Lambda^{\circ}_{0} = -1$, which contain It

The Lorentz transformation

$$(I_s x)^s = x^s$$
; $(I_s x)^{\frac{1}{s}} = -x^{\frac{1}{s}}$ $\hat{i} = 1, 3, 3$

It (time inversion): 时间反演

$$(I_t x)^0 = -x^0$$
, $(I_t x)^{\hat{i}} = x^{\hat{i}}$ $\hat{i} = 1, 2, 3$

Ist (space-time inversion) : 时空反演

$$(I_{St} x) = -x = (I_{S} I_{t} x)$$

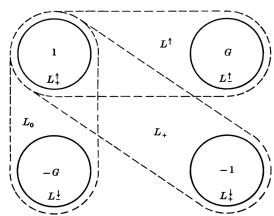


FIGURE I-I. Connectivity properties of the Lorentz group, L, and its subgroups: the proper Lorentz group, L_+ ; the orthochronous Lorentz, L_+^{\uparrow} ; the orthochorous Lorentz group, L_0 ; and the restricted Lorentz group, L_{+}^{\uparrow} .

The important subgroups of L:

L^ =
$$L^{\uparrow}_{+}$$
 U L^{\uparrow}_{-} the orthochronous lorentz group 正常 Λ°_{0} > +1

L+ = L^{\uparrow}_{+} U L^{\downarrow}_{+} the proper lorentz group 正常 $\det \Lambda = +1$

Lo = L^{\uparrow}_{+} U L^{\downarrow}_{-} the orthochorous Lorentz group 正统 sgn_{0} det $\Lambda = 1$

The proper orthochronous lorentz group

or the restricted Lorentz group

Classical field theory:

Scalar field: $\phi(x) \xrightarrow{\Lambda} \phi(x) = \phi(\Lambda^{-1}x)$

Vector field: $A^{\mu}(x) \xrightarrow{\Lambda} \Lambda^{\mu} A^{\nu}(\Lambda^{-1}x)$

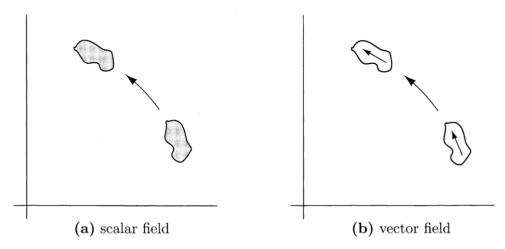


Figure 3.1. When a rotation is performed on a vector field, it affects the *orientation* of the vector as well as the location of the region containing the configuration.

E.g. The Klein-Gorden field

$$(x^{-1}A)$$
 [$\phi_{i}G_{i}$] $\phi_{i}(x) = (x^{-1}A)$ $\phi_{i}G_{i} \longleftrightarrow (x^{-1}A)$

$$= \frac{9\lambda_n}{9} (V_{-1})_n^{\mu}$$

$$= \frac{9\lambda_n}{9} \frac{9\lambda_n}{9\lambda_n} \qquad \lambda_n = (V_{-1})_n^{\mu} \chi_{\mu}$$

The derivate terms in the Lagrangian transform as

$$\int deriv(x) = \partial_{\mu} \phi(x) \partial_{\nu} \phi(x) \partial_{\mu} \longrightarrow V_{\mu} \partial_{\nu} \int deriv(\lambda) [g_{\mu} \phi_{\mu}](\lambda) [g_{\mu} \phi_{\mu}](\lambda)$$

$$= \int deriv(\lambda)$$

The potential terms transform in the same way $\phi^2(x) \longrightarrow \phi^2(y)$, then

$$S = \int d^4x \ \mathcal{L}(x) \longrightarrow \int d^4x \ \mathcal{L}(y) = \int d^4y \ \left| \frac{3x}{3y} \right| \ \mathcal{L}(y)$$

$$= \int d^4y \ \mathcal{L}(y) \longrightarrow |det \ \Lambda| = 1$$

Quantum Lorentz Transformation & The Poincaré Algebra

For an infinitesimal inhomogeneous Lorentz transformation

$$\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}$$
, $\alpha^{\mu} = \epsilon^{\mu}$

Then we have

 $W_{\mu\nu} = -W_{\nu\mu}$ antisymmetry . 6 independent components + 4 components of E^{μ}

23 An Poincaré transformation is described by 6+4=10 parameters

The transformation $T(\Lambda, a)$ induce a unitary linear transformation in the Hilbert space.

The operators U satisfy

$$U(\bar{\Lambda}, \bar{\alpha}) U(\Lambda, \alpha) = U(\bar{\Lambda}\Lambda, \bar{\Lambda}\alpha + \bar{\alpha})$$

Choose U(1,0) = 1 unit operator

Then

$$U(1+\omega, \xi) = 1 + \frac{1}{2}i\omega_{g\xi}J^{g\xi} - i\xi_{g}P^{g} + \cdots$$

$$i\omega_{g\xi}$$

$$independent operators$$

Since $U(1+i\partial, E)$ be unitary, J^{90} and P^{9} must be Hermitian

$$J^{grt} = J^{gr}$$
, $p^{gt} = p^{g}$ (p^{o} : Hamiltonian
 p^{i} : momentum operator
since w is antisymmetric J^{ij} : angular momentum
we choose $J^{gr} = -J^{gr}$ $i, j = 1, 2, 3$

Lorentz transformation of Jet and Pg

$$U(\Lambda,\alpha) \ T^{g} \ U^{-1}(\Lambda,\alpha) = \Lambda_{\mu}^{g} \ \Lambda_{\nu}^{g} (T^{\mu\nu} - \alpha^{\mu}P^{\nu} + \alpha^{\nu}P^{\mu})$$

$$U(\Lambda,\alpha) \ P^{g} \ U^{-1}(\Lambda,\alpha) = \Lambda_{\mu}^{g} \ P^{\mu}$$

Then if an = 0. Just is a tensor, Pr is a vector

if AMU = SMU c pure translations) PP is invariant, but JPE is not

Lie algebra of the Poincaré group.

I PM, P9 J = 0

conserved operators (commute with P° = H)

$$P = \{ P', P', P^3 \}$$
 $J = \{ J^{23}, J^{31}, J^{12} \}$ P°

not conserved operators

$$K = \{ J^{10}, J^{20}, J^{30} \}$$
 (do not use K to label physical state)

Pure translation T(1, a): subgroup of T(1, a)

$$T(1, \overline{\alpha}) T(1, \alpha) = T(1, \overline{\alpha} + \alpha)$$

$$U(1, \alpha) = e^{-\hat{\alpha}P^{\mu}\alpha_{\mu}}$$

space-time translation on the field operator $\hat{\phi}$ $e^{-iP\cdot x} \hat{\phi}(o) e^{iP\cdot x} = \hat{\phi}(x)$

A rotation Re by an angle 181 around the direction of θ_{3} $U(Re, 0) = e^{i \vec{J} \cdot \vec{R}}$