
 

4 Renormalization

The perturbation expansion is visualized by Feynman diagrams

tree diagrams

P2

involves 144ICP PaPs k

Loop diagrams are usually c not always corrections to a process that already

exists at tree level

It turns out that the loop integrals folk are in general divergent

Renormalization theory deals with the correct interpretation of these seemingly

ill defined expression The result is a much deeper understanding of QFT

that reaches far beyond the realm of perturbation theory



4 1 Regularization and renormalization theory

Develop the basics of renormalization theory for 4 theory

L Ic and2mg mid 490.4

The index o refers to the bare or unrenormalized parameters to

distinguish them from the renormalized ones to bedefined later

A first example the self energy
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Can do the ko integral applying Cauchy's theorem or apply Wick rotation
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Z It 0 ti I This is special to 4 theory because

It does not depend on the external

all momentum p

The self energy of thescalar field

and hence thephysical mass of the

scalar particle is infinite when A x 1

Thephysical mass of the particle is givenby the solution to

p mi Tip mis pens o

If I can be computed in perturbation theory one can solve this equation

iteratively to obtain
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The renormalization paradigm

The divergence arise from loop momenta ko
mass
externalmomenta

also called ultraviolet divergence

The integration over R R up to x arises in the first place because

the interactions are local large R as small x and the particles point like

c one d of at every I

Empirically know

1 Fundamental interactions are local and relativistically invariant up to

some scattering energy Emax or some Xmin YEman Can never probe

arbitrarily large Emax

But LeGo Mo Ro describes a theory which is local and Lorentz invariant

for all energies no matter how large so it contains a large extrapolation

2 Relations between observables in experiments at energies Emax can not

depend in an essential way on physics at much higher energies otherwise

one could resolve arbitrarily small structures withfinite energy in contradiction

to the uncertainty principle Hence if Lc to mo Ro describes a sensible theory

the relations between physical quantities mustbe independent of the regularization

But mo Ro are not by themselves physical quantities I directly measurable

Only m is as are scattering cross sections etc



Hence conjecture that the following procedure can beapplied

L c Go Mo Ro

replace mo Ro by physical quantities m a

memono Remo Ros depend on the regularization

Compute other physical observables f from

but expressthem in terms of M R not me Ro

f f M R FCmocm.RS Room a

This should be independent of the regularization and represent an

unambiguous testable prediction of the theory

No Mo are therefore only auxiliary parameters If the above interpretation is

correct any regularization method can be chosen and one chooses the one that

makes computations simple Once the regularization is removed the theory may

or may not describe phenomena up to arbitrarily highenergy It does not matter

We will never know I beable to test thisby observation anyway



Regularization methods and Feynman parameters

Consider the integral
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Dimensional regularization

Assume space momentumspace is d demensional and RE is a d dimensional

vector Replace

fake254 s ie d f dakead with MEM EE JE 0.5772

Euler constant

Here it cus is an arbitrary parameter with mass dimension I which must

be introduced to keep the mass dimension of the original integral unchanged

Note that Aca A is now convergent when d 2aso The idea is to

compute it for data and then continue the result analytically in complex

d space to d 4
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Remember the following properties of the P Jn Pos Tdt t e t
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Pint is n for n o I

Pix is an analytic fu in the complex plane with simple poles at K o 1 2
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Aca A is singular for d 4 when a 1,2 Theoriginal integral diverges

for all as 2 but in dimensional regularization the analytic continuation

in d gives a finite value
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00 to scattering at the one loop
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Before continuing we remark on themass dimension of couplings andfields in

dimensional regularization
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Interaction term I Do4043 d Ito d 414 1 4 d ZE

The bare coupling is no longer dimensionless In general the dimension

of fields and couplings depends on d

Computation of the loop integral
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Hence
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s t re Mandelstam variables

Divergent as d 34 Eto

Also depends on the regularization procedure

Definition of a physical interaction strength through the value of the 2 32 scattering

amplitude at the production threshold s 4m t 4 0

all threemomenta vanish
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this is needed in dimensional regularization

so that It o

Ao
the't to 1 at E senmu Aram's

32T
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regularization
A Ro

R NCRo me depends on the regularization but I can bemeasured directly by

measuring 242 scattering at threshold in practice close to thresthold



Thenexpress the scattering amplitude for arbitrary kinematics in terms of R

Tz14 ca
amp ite It s E sen Achim's t

x 1 E 3 In Ais Act Acu t

it it Is Aes Acts Aces Aram's act

now cantake Eso also mo Mt oca

doer is now a calculable prediction of the theory including the quantum

correction

The above result is independent of the intermediate regularization
This worked because the UV divergence was independent of the kinematics

This was the case because it arises from loopmomenta largerthanany masses

or momenta

The definition of R is not unique and thefunctional formof the scattering amplitude

depends on this definition However its numerical value doesnot

Forexample could have defined some R by
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arbitrary choose some value

Then
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but because

X R It BAC46 Acam's t

thenumerical value is the same if the numerical valuesof a and a are correctly

related according to the previous equation



Renormalized perturbation theory

Renormalized fields
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renormalized fieldand Green Ins

G ex sons Crl T dead Glen r

Glmex xn dz ad ex sent Cr T dock n tocsins Irs

and
Gimpo Pn F

j jÉ
the combination which enters

since n 2 Pt fns
the 252 reduction formulaare amputated and

612 n 2Gg

Computation of renormalized Greenfunctions in bare perturbation theory

11 Compute the relations memo to Remo Zo ZemoRo to the required order

in perturbation theory defining a through an observable Any convenient

regularization can be used

2 Compute G x Rn to the desired order in terms of Ro Mo

3 Eliminate Ro Mo in the expression for God'sx xn in favorof a m

and muliply by TZ where Z Z Moomin notmix The renormalized

Greenfunctions are free divergences and independent of the regularization



An alternative scheme is renormalized perturbation theory which never uses

explicit bare parameters This scheme oftenleads to a simpler book keeping

for more complicated theories and processes and particular in higherlooporders

I Write to It4 ma m't8m Ro Zx tie where Z 8m Zx still

need to be determined

2 Since Z 1 Zx 1 8m are c at least Oct we can express the

Lagrangian in termsof the renormalized fields and parameters and treat the

difference as a perturbation
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conterterm Lagrangian The terms
first line in previouseq
Er hasthesamefunctional are treated as new interactions i.e

form as Ict is considered as part of Lint

for the derivation of the Feynman rules

3 Compute the Green Ins In this case the Green Ins are directly the

renormalized ones only 4 appears ever The Feynman propagator of

the 4 field is
pantie

I not ma ie and theresult is directly

expressed in termsof M R I mo Ro never appear



The counterterms SzE Z 1 8m Z 1 m't 28m Sr Zaz I have to

bedetermined order by order in theexpansion in R by three renormalization

conditions The scheme defined above corresponds to

p m ii

p m

to all orders
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The renormalization condition x then determines Sz Sm at ock's from the

two loop computation of TL's If the scheme is to work out the divergent

left over before one adds ox must have the correct form namely

ax p't b Otherwise I could not be made finite with a renormalization

ofmass coupling and field



Renormalization schemes and scale dependent parameters

Up to now we defined m Z fromthe location and residue of the apt In

We now call these Mhs Z
Fon
shell

One can impose other renormalization condition than x This only amounts to

a reparametrization of the theory

Ios dos 4

Mi mphys Sm'phy met8m

Mphys Mphys mix is a calculable relation freeof divergences

Different conventions renormalization conditions are also referred to a different

renormalization schemes

Computation of scattering matrix elements

Independent of the convention for the renormalized mass Camp must always

be computed for on shell momenta Pi Mphy's

The Z factor in the 152 theorem is always the residue Zos of the bare

2 Pt Fns If one computes renormalized Greenfunctions but uses 4 not dos

one needs to multiply damp by Ig to get the scattering matrix

element Note Zos Z I t Oct is freefromdivergences



The MS modified minimal subtraction scheme

This has become the most widely used scheme Instead of imposing renormalization

conditions on certain Greenfunctions one simply defines the counterterms si such that

they contain only the divergent contribution a Yen in dimensional regularization

Theparameters mi I in the Ms scheme have no direct physical interpretation

This does not matter as long as all observables can be related to them in an

unambiguous divergent freeway

MS mass

it in
3am C m I In I i Szp't 8m

on shell Sm m I enmu t 1 I so that Ilana o

MS Sm a m te

ME Mptys Empty Mihys I Ep É In mthys
us
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mphys mics It In I t oca's
I

independent
I
TheNts mass depends on u in such

of u a way that the left hand side is

independent of u

Relation between the Nts and the physical con shell mass

u can inprinciple be chosen arbitrarily but some choices are wiser than others

as will be seen



MS coupling

lamp
item I E sen Acs Acts Asus on

Previously Sa f 3k Acam's
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R É Tcm it 8g Sa t Tcu since Sz o at Oct
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scale dependent coupling such that the lefthandside is
independent of u

This is a general feature of the Nts scheme All renormalized objects depend on

the scale u introduced withthe d dim integration measure However one can define

scale dependent quantities also in other schemes The usefulness of scale dependent

parameters in particular couplings will become apparent soon



4.2The systematics of renormalization

This deals with the question whether all Greenfunctions of a given theory can

berendered finite by renormalization of thefields mass and couplings This

is non trivial because there is only a finite numbersof parameters that can

be renormalized and the structure of the divergences must match the terms that

can be added consistently to the Lagrangian We will not treat this mathematically

exhaustively here However the main ideas will become clear

The systematic analysis will provide us with a better understanding of the structure

of quantum corrections and lead to the important concept of effective quantum

field theories



Degree of divergence and classification of renormalizable interactions

Thefollowing considerations are general and do not assume any specific Lagrangian

The theory may contain several different fields labelledby f

Notation

2 IPI Feynman diagram

2 number of loops

Ig number of internal lines propagators of field of type f

Eg number of external lines propagators of field of type f

Vi number of vertices of type i

ai number of derivatives on fields in vertex of type i

nig number of fields oftype f in vertex of type i

d number of space time dimensions

Note it is enough to consider IPI diagrams In a IPR diagram the line

that connects IPI subgraphs does not contain any loop momentum so the

analysis can be done for every IPI component separately

P

p y

Consider PI self energy and

q I
p

vertex subgraphs only
Pa

Assume that all loop momenta become large at thesame rate More precisely let



powersof loop momentum in the numerator of the FeynmanD r Max
allterms diagram including the integration measure

powers of loopmomentum in the superficial degree of
divergence of rdenominator

Example
goth dk I1

gut It ok pi niat 4 at RI Ck ka

4 2 0 2 4

Der max o 2 2 quadratically divergent

The diagram will certainly be divergent if Der o The case Deo o

is called logarithmically divergent since f In A

Computation of the superficial degree of divergence

Propagator of field of type f n Yon se for k's m Sg o for the scalar

field We keep Sy general since Sf to for other field types However one

can assume Sf 30

Der I Ig 25g 2 I Vi ai t d L x



For connected diagram the number of loops is

2 3 If II overall momentum conservation

8 In always left over

Also
zz Eg I ViNif
Every internal external line contributes twocones ends which have to be

tied up with an internal vertex i The vertices supply Vinny ends

Eliminate 1 If in x

Der d FEg I It Sg EV Ai

with Ai I d ai I rig I Itsy is a characteristic quantity for

each vertex of type i

From now on restrict to d 4

Case Ai o for all vertices i of the theory

Der I 4 FEgC It Sg
The degree of divergence decreases when the number of external legs increase

Only a finite number of IPI Greenfunctions can be divergent

For scalar field theory

maximal value of Der

x

8m Z 4 4 2

Zx 444 I

4444 o



This suggests that all divergences can be removed by counterterms corresponding

to fields mass and coupling renormalization of the theory

so scout auto midis 54 I
Note sometimes one needs fewer counterterms than this analysis suggests For

Ic and2nd map 4444 there is no divergent three point function because

the symmetry of of forbids non zero Greenfunctions with an odd number of

fields

The converse also occurs one needs more centerterms than the original

Lagrangian suggests Suppose we assume a theory of two scalar fields

L Ii Icardi anti mid 4 ol

Then we can have 4,4 d d scattering

I i t 2 more

We know that we need a counterterm of the form Sa0,4 to make this finite

but we canget it from only if we assume there is a É'd terms from

the beginning Similarly for 4,4 Hence we must add these terms to and

determine thevalue of the three couplings a a Is by measuring the strength of

4 4 4 4 4242 4242 4,4 424 scattering independently Note that

the 4,4 4,4 terms are not forbidden by any symmetry of the original Lagrangian

Hence we conclude



A theory can be render finite by a reparametrisation of fields and masses and

a finite number of couplings interactions

if a Ai so for all vertices

b contains all vertices compatible with the symmetries of

the regularized theory The regularization may break a symmetry

Then it is no longer a symmetry of
such theories are called renormalizable Despite the divergences in Feynman

diagrams these theories are fully predictive All divergences are absorbed into

parameters which can be obtained from afinite numbers of measurements Even

if there were no divergences one would have to perform precisely the same

measurement to determine the parameters masses coulpings of the theory

An interaction is called renormalizable if Ai o and superrenormalizable if

Ai o In the latter case Der decreases due to IF Ai when the

number of vertices of type i increases Ultimately Der co always if
Vi is large enough Hence if all Ai o the loop diagrams are finite

from a certain order and there is only a finite number of divergent diagrams

Such theories aye called superrenormalizable Theonly such theory in d 4 is

dcompany m'd's d

This theory is not interesting as a physicaltheory because it has no stable

ground state since the potential is unbounded from below

Case Ai o for at least one vertex type i such theories are called

non renormalizable We discuss them separately below



Subdivergences and the renormalization of Feynman diagrams with several loops

Theprevious analysis is incomplete because we assumed that a diagram is

convergent if Dea o This is not always correct since the loop momenta may

become large at different rates or only a subsetmay become large In this case

Der maybe negative but a subdiagram may divergent

Example

PA
divergent subdiagram r

P DCP 2 but DCO 2

divergent as k x forfixed l

Theorem Weinberg T is convergent if Dea so for 8 7 and all

subdiagrams r of P

The statement appears obvious the proof is nevertheless tedious

For theabove example it is clearthat thedivergent subdiagramdoes not invalidate

the previous statements about renormalizablility Work with renormalized perturbation

theory and Lrt Ict Then there is a counterterm for the divergent subgraph and

tf t te is finite



A more complicated situation arises if DCP to and if there are divergent subdiagrams

Consider the example fake exampe

two loop self energy in 4 theory p d p
P

The computation of this diagram in dimensional regularization in the massive theory

gives

six p's s m ft In t t t finite

It is not possible to compensate thedivergent part in braket by a mass

conterterm x
gm

since the centerterm can never contain lnp

Since the Lagrangian is local conterterms can only be polynomial in momentum

However P has two divergent one loop subdiagrams

for this we have the counterterm

IET YI yes in at

Hence at oca's one should compute

É sI sis ÉRa
regionRaok region R s Ra

These diagrams are

of theform et x et ten
I

fromthecounterterm from D

in such a way that the sum is actually etten in

44theory
I p's m E E finite

so the left over divergence is local and defines 8m



The above example and statements can begeneralized and proven for arbitrarily

complicated Feynman diagrams completed by workby Zimmermann and others 1970

Thecombinations of renormalization of all subdivergences by their corresponding

counterdiagrams leads precisely to themultiplicative renormalization contained in

the reparameterization offields masses and couplings



Non renormalizable and effective quantum field theories

We return to the case that Ai c o for one or more interaction terms in

Lint Then

Der d FEg I It Sg I Vi Ai

contains one positive term hence

any GreenJunction any Eg becomes

divergent if only Vi is sufficiently
large

Must add an infinite number of terms with more and more fields to Lint and

hence an infinite number of unknown coupling constants c subject only to the

symmetries of the theory which must be determinedby an infinite number of

measurements

It therefore appears that non renormalizable theories are unpredictive This was

indeed the attitude in theearly period of QFT c until about the late 1970s

Themodern perspective however is quite different

Consider the example scompany m'd 4444 p

Since of I the coupling has dimension to 2 We can write to to na

where M is some scale chosen so that Io is Oct



This is general Since I I d the dimension of a coulping gi multiplying

an interaction term with vertex Vi is

d gi t ait Enif I I Sg

Timensionfo 4,3 From the kinetic term in

always d 214g 211 Sg

Igi Ai

Hence write gi i

Goback to the example the 4 vertex induces 2 32 and 474 scattering at

the one loop level

P P
Thefirst contributes to say the

p Pa
secondrequires that one adds a

n É xp
g

p em

This illustrates that above statement that one must add all possible interaction

terms to

Now consider a scattering process where theparticles involved have momentum

not largerthan some energy E C in the cms frame Then an interaction with

A o contributes an amount

ITpa o ga E
Mia

where D 1Ail is the dimensionof 1Tpa



If Ece M the contribution of non renormalizable interactions to a scattering

process is suppressed the more the higher thedimension of the interaction

operator

Hence if one is satisfied with making predictions of finite accuracy only

a finite number of non renormalizable interactions is ever relevant Hence

non renormalizable QFTs are as predictive as renormalizable theories as long

as E c N If one wants to increase the accuracy one needs to include

higher dimension operators but the required number is always finite

To summarize

renormalizable QFTs The interaction operators have dimension e 4 such that Ai o

Thetheory can inprinciple beused to calculateprocesses at

arbitrary energy scales E It is a candidate for a

fundamental final theory of Nature

non renormalizable QFT Includes interaction operatorsof arbitrary dimension but

only a finite number is relevant if energies are small

enough Predictive QFT for phenomena below a certain

scale M Such theories are also called effective field

theories for E M

The distinction is in fact not as fundamental as it appears Since one will never

beable to perform experiments at arbitrarily large energies we will never know

whether a renormalizable theory thatworks for energy E is infactonly the leading

term of a non renormalizable theory for E am because the two cannotbedistinguished



An effective field theory example

EFTS can bevery useful in practice even if the description in termsof a

renormalizable theory exists in principle

This is illustrated with the following exampleof a theory with two scalar fields

with very different masses

at ang n't'd I belong Imig y ggp'd

Ks g r ocm

Note that this is a superrenormalizable theory We could add the 443 f
and g't'd interactions But for the present purpose we can set them to zero

Assume that the energy of scattering processes is such that pi Jj m ca n

for any external momenta Pi Pj Then we only have to consider external lines

of ft

p

only 4 a
Pi Pj N

Since f particles cannot be produced we can write down a non renormalizable

effective theory containing only the 4 fields which reproduces thescattering

amplitudes of the full theory to agiven accuracy One says that one integrates

out the heavy scalar field Thus we need to find Leff such that

Tpa computed

sexyegg

compute
with withLegg

I depends ondesired

accuracyof the
approximation



Consider 44 44
t

I If agile tea
Pa Pa

ti 2gup to g't

We can reproduce this by writing

Lefty aptang m'd'd 4 pto where Xy 2g an

But we need more vertices

it ILeff
whichcontains only

3 more

I
c ig c ik 91 qty

So we need 1 autotomy m cop If 443
with Ro n 93k Nt dimensionless

At thisorder in Yan one should also includes a term 142,431244 which

comes from the 01943 144 correction to 44 too scattering Thus it is clear

that we can replace
Left

for the purpose of describing low energy c E ca M of scattering processes



This extends to loop diagrams

Tang I sming
t

which determines the change of the mass and field renormalization due to the

presence of 5

Ti X If
I

174 44
a new contribution

to 44 of order 944
The successive computation of corrections to the couplings of the EFT is called

matching For this to work it is important that remainders are local i e arise

from loop momentum R M s E Thisalways work out becauseby construction

Leff reproduces the low energy physicsfrom kn E To see this consider the

above diagram I

RIP This corresponds to DIiii iii

RJ Rtp 13 This contribution is a complicated fu of the Pi

Koca
can expand in all pi so the integral is

SET the x polynomial in pi

which can be reproduced by a local vertex X



We can take two perspectives on this example

11 If the full theory is known we can use the EFT because the calculations

are simpler provided we are interested only in physiis at scales

E can The simplicity aries because the effective couplings 14 Xo are

process independent and can be determined once and forever by matching

Afterwards one can use thesimpler theory of a single scalarfield

12 If no experiment ever accessed energyscales of Olan we cannot know for

certain what is the full theory All accessible physics can be described by a

non renormalizable theory of a single scalar field where the couplings

74 No are determined by experiment Once their values are known this

provides constrains on possible full theories at higher scales because the

measured value of no may not be consistent with the one predicted by the

hypothesized full theory



Renormalization of composite operators

It is sometimes necessary to consider scattering matrix elements I and hence

Green Ins with insertions of composite operators 0143 ix product of

fields at the same space time point i local operators possibly with

derivatives But Greenfunctions such as

an T 0503104 dry Olya n 123

I or more complicated ones with several composite operators are not rendered

finite after renormalization of fields massesand the coupling parameters of the

Lagrangian

Example 44 theory operator of

Let Go 54 4 Zap

Consider the renormalized Green Junction

Gist ya ya cult On Gig Olya Irs

Zopa 1525 er T 43nsGolgi Ooty in

x x

y g

d on

sym

Zo g yXJ Ya

11 12 13 14

t
The divergence in these two

diagrams is cancelled by
replacing mi mism x

in the two propagators in j



The naive assumption would be Zp Tz from the renormalization of thefields

But in 4 theory TZ It 01k hence contribution 14 vanishes at Oct But 121

has a logarithmic divergence so the renormalized Green function would not be

finite

Need operator renormalization that is 24 t 1523

Then choose Zap I such that 14 cancels the divergent part of 121

In the NJ scheme Zap I pole part of 12

The reason why total renormalizes differently from doinpolys no matter what

y x is that the local limit y x generates new ultraviolet divergences

There is in fact a close relation between composite operator and coupling

renormalization Add

f o coof
composite operator

to the effective Lagrangian

coupling
I e.g 43 44 40

The fact that one needs coupling renormalization i.e Co Zac is related to the

fact that rescaling the fields in Oo is not enough to make Green Ins finite

In case of Lagrangian terms it is conventional to associate the Z factor with

with the coupling C in case of external operators one associates it with

the operator itself



Operator mixing

suppose 0 is a local composite operator of mass dimension D e.g 4 in

theory Then Oo Zoo may not be enough to make all Green fns with

elementary fields and an insertion of O finite if there are more operators of the

same dimension

Example

rt T 4 in daly 4,1921 In
y _y

S IC ap't bm's
Fourier

divergent part 97 m by dimensional reasons

Here a o
transform

This divergence cannot be cancelled by any rescaling 244 It or counterterm

from simply because there is no tree diagram but the divergent part has the

straiture of the operator 2 424 I a or my I b corresponding

to x ap'tbm

The solution is operator mixing One needs to consider all operators of dimension

D here 44 m'd 242nd m I

Then
Oro Zij Oj

I
matrix of renormalization constants



Crl T 44k day dry in 12 J j Z rt T Oj in dig Gig er

D
44 TEE z

I finite

I Z 1 is o since no pye and Zi't o

In this way divergences can always be removedby renormalizing the complete set of

local operators Simplifications apply to operators that vanish by the equation

of motion Such as angary m'd



43 The renormalization group

Begin the discussion with two observables

The need for regularization always introduces a new scale A for cut off

regularization

M C or G for dimensional regularization Note that u should not be viewed

as a cut off The analogue of the cut off is Ye but one needs the

renormalization scale u for dimensional reasons

When A x or E o the dependence on the scale may remain depending on the

renormalization condition Such as u in the definition of Niv or the dimreg

scale u in the Ms scheme Tims

If I was scale invariant as a classical theory h contains no dimensional

parameters in particular mass scale invariance is certainly broken in the

regularized theory When a x or Eto scale invariance is usually not

recovered hence dilatation symmetry is anomalous

Consider 40 00 scattering at high energies s t n n som for the case

where the coupling I was defined by

Tz G'atp
I s 4mit n o

in

1Zn 1 I I 3dmmm A14m's



Then
i Tpp pg in it Is Aes t Ast Alas oia's

s in lat me it tf I k ten t In It

Since Aip's fidx In t
gym In'm

The perturbation expansion breaks down even for small n when men a roils

i e in the high energy limit

This is a strangeresult one would have expected that one can simply compute

theprocess setting m o Instead the result diverges for m o and the expansion

breaksdown

The reason for this unexpected behaviour is that the renormalization condition which

defines Za depends on m and does not allow the limit my o To investigate the

high energy limit one must use a definition of R which does not have this

property for instanie the NJ coupling Tim or the coupling Niv

Use Ms

Zit I It It oin's
aim a Zx Zits 1 Fa 31nF Alam's to it its

i Tat pp incur it ten ten that tom's

There are no large logarithms for s t us m provided one chooses the

renormalization scale an old's and perturbation theory is well behaved provided

him cc's for ur old's i.e provided thescale dependent or running coupling

is small at the characteristic scale of the process



Computation of thescale dependence

Question is how to compute aims for different ee

Suppose a is known Cannot use x to obtain nits direitly because

the expansion in aln's a osl is not well defined Instead

R Rearms alienTs
1 1

evolve the Nis coupling from M to us

Bare coupling no is independent of M no Zit'sie Erin

n'gains aid i e zits x

E hint Ig n Zits aims it

Bix I finite as e o simplestformof a
renormalization groupequation

du
n II In

as

aim

This allows to compute aims from asset given M andMs

Similarly for masses Write mo Emmins

it min n I2mi me Em le Em min

I
me independentof n TI

In d
omens dig

Inmins
mini II any

mins mini exp Fda
From this can obtain mins from mini Forsimplicity assumed that I contains

only one coupling Otherwise one has a coulped system of several differential eqns



43.1 Overview of possible scale dependence

A Trivial infrared IIR fixed point

This case is realized in 4 theory discussed above and corresponds to

Box so for small a Cand E o

theory Zx It IIe
dropsuperscript Ms

dy En jog him to'd

Bin Extort Ga Rin t Ost

i e pix Emin thin old

Ep T t 01N pot't

Inuiem up It da pint off

to In Hm t

t
Nina Rimi

I Bonini In

Hence choosing a room can compute aims for Man old's Here we only

need that aim is small in the intervall ME hi Ma but not that

Tenma is small

Since Paso him increase with u and diverges at

n
Afp We Bottas

the Landau polescale

While for use also Rin o 1 IR fixed point



Since him needs to besmall for the above to be valid the question what

really happens near Map can not be answered in perturbation theory Onewould

need all terms in the expansion of pins

However one can conclude that the interaction becomes strong and non perturbative

at highenergy Note that if aim is small at low energies nap is

exponentially large

The term fixed point refers to the fact that pixx o for nx o At

the fixed point the running of a stops Trivial fixed points are those

with vanishing values of couplings since then the theory is effectively free

Here this is the case for us o c IR

The use of running couplings can beviewed as a resummation of certain large

terms in the perturbative expansion to all orders

Let q'as a ta ie then

i Told to in iq a If a
coefficientof orb
no largelogs

t

Inserting a q
lml

I 33 himen
one recovers the starting expression

i Tpp pg in it In Aes t Ast t Alas oia's

s ita lat me it t Ea f en ten t In It

and an infinite series of terms n im In i leading logarithms in

every order The running coupling sums these terms systematically



B Trivial ultraviolte Ux fixed point

Ben Bott but Paco

Riva AIM

Bosnia en

B

Y
MI

The coupling decreases with u d i.e effective interaction strength becomes

weaker for higher energy scattering trivial or fixed point

Onthe other hand as u decreases a increases and becomes infinite at

some scale AIR Again this should be interpreted as entering a region of

strong coupling not accessible to perturbation theory

This occurs for the theory of thestrong interaition quantum chromodynamics

For experiment
astr I o

as cmz 95 1me a a ing asymptotically free4Th

mass of the Z boson a 91Cell asin x for
dsir Aar 200 Nev

bound
States

asymptotic freedom

AIR M



C Non trivial fixed points

This refers to situations where there exists a Rx to such that pin o

Two cases

Bin UV stable fixedpoint

I

i.e independent of the starting value x

x Rt

This occurs since for a ax pix so hence increasing u increases a

until he is reached For a Xx Bix co and a decreases as u

increases

For re o the behavior depends on whether one starts with a ax or

Nc Tx In the above example a o is an IR stable trivial fixedpoint

II aping
IR stable fixed point

For u increasing R is repelled from the fixedIi
point

In the example n o is a UV stable trivial fixed

point



Renormalization group flow

This can begeneralized to theories with several coupling constants hi We

assume first Lai Ai o renormalizable

ei d
des

Ritu BilNj BittyRr t

Coupled system of differential equations

Fixed point solutions a point Aj in thespace of coupling constants

where piing o Hi is a fixed point since agent Nj is a solution

Fixed points can be attractive or repulsive Depends on the eigenvalues of

the linearized system

u'd ni It ink ai

Tonstantmatrix Aik

Attraitive in thedirection of negative eigenvalues repulsive for positive onies

Tax
Flow indicated for increasing m

ve

direction

n

repulsive

direction



Now include dimensionful coupling constants and considerthe flow of couplings

in a non renormalizable theory

Imp and I Ri Oi

I 2ndsup Im'm p 44144 fi'd't
Let

Introdule dimensionless couplings I I Rain I Rain m etc

Then

n'g Ii picky ti t pikaj In t

since for small Ii the m dependence is determined by the trivial factor in É

Now assume the theory is valid at a large scale a s energy of scattering

experiments and masses Also assume that at this scale all couplings Ii are

of the same order oils but small enough to allow a perturbative expansion

Then

dat
y Inti lnm t const

Film Ii in x F corrections

Non renormalizable couplings Hiro become unimportant for M E can

namely of order I in agreement with the previous discussion

This explains why low energy phenomena are described approximately by

renormalizable QFTs

Operators Oi with I Oi 4 are therefore also called irrelevant



Superrenormalizable couplings grow for mac 11 This applies in particular

for mass terms

Msu M I'sins A Ica Ock

A mass term mins cc n requires that one fine tunes I in to very

small values

Operators with L 0 3 a 4 are called relevant

Renormalizable couplings and operators with 1023 4 are called marginal

Whether they grow or not for m t is determined by the next term pit
not by their mass dimension



4.3.3 Renormalization groupequation for Geenfunctions

Renormalization groupfunctions

Bi ing m Ri

Omstg mass anomalous dimension

84 Nj 3 field anomalous dimension

For composite operators running z ignamy zan
operator anomalous

dimension matrix

Theorigin of theterm anomalous dimension willbecome apparent

Now derive the scale dependence of n pt fns

mm

massdimension denotedby da
Ein pi M R

renormalized n pt Jn expressed in terms of

renormalized parameters

Now rescale all external momenta by a common factor fi a Pi

Pi Pj Pi Pj Film a film PicMa
Hence

G api m n ada G pi Ma R

But this wrong

because É alsodepends explicitly on therenormalization scale

The correct statement is

G c api m n i n adat c pi I R ta Ix

Thegole is to construct a RG eqn that allows us to change ya back

to m Note M R on bothside of it refers to mini aims



The bare Greenfunition is independent of M

u g 2k G pi mins aims m 0

u g t m In t m Im t I It Gen'spi mins aims us

n'g t Bex t omit m m
t I Fix pi mins aims m

o
Definethis as Fsu where mins Tim

aresolutions to t with initial condition

Mino M Rino R

Then

Mad Irpinia Fins o

Fins Fine exp I J Irgc across
Explicitly

G cpi mins aims m G pi mines nine no e
5 8414101

Use this in it I left handside with pi api

G capi mines nine no e III ada g pi ite aims t



Now choose us ano the rename no u

G lap mins aim m addexp f g n841Rca's in

x G c pi tart Xians m

Comparing this to the naive wrong result this is an additionalfactor which

modifies the naive dimensional scaling add involving the anomalous dimension

of the field and a change in themass and coupling arguments which takes into

account the scale dependence of thecoupling

Notes

11 For amputated Green Sns M I 215 Gmp1 s o hence

nog nog in txt

12 If the n pt Jn involves a composite operator Orix instead of

41st there is a contribution from the operator anomalous dimension



Application Examples

Consider the apt function of a scalar field G p mins air m

da 2

Take a P Po

p
es dad 2801 19m go pi Mt grams inG p mins Aires m

D8

Case a small coupling 8419 To it

B IR Ban't

exp S 99 angina's's ext fi spence's

exp
ans

am
d 1 5

next Sittang
exo t.in t

G p mins aim m x I rip A
x p independent t ofhips my

p'sx

Deviationfrom the naive scaling

behavior Ypa fromdimensional analysis



Case b Non trivial fixed point

Xt
For a no no xx

Hence

exp f 99 opinions x exp 24in f d

f
tons

IG p mins aims re
spa Fixx L P independent

p x

Compared to thesmall couplinglogarithmic modification

here the power law changes and in this sense the

field dimension changes from I I Joins

near the fixed point

The example shows that near a fixed point quantum fields can behave like objects

with a dimension differentfrom their canonical mass dimension This can have

important implications for renormalization theory Our analysis of renormalizable and

non renormalizable theories was based on perturbation theory If the theory has

a non trivial UV fixed point I a question that cannot be answered in the

context of a perturbative expansion in R which assumes a a while ax is a

finite number a theory which looks non renormalizable by perturbativepowercounting

may in fact be renormalizable In this case what counts is the anomalous dimensions

at the fixed point


