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The Hamiltonian of interest is expressed as the sum of an
unperturbed Hamiltonian Ĥ(0) and a perturbation δĤ:

Ĥ = Ĥ(0) + δĤ.

Both Ĥ(0) and δĤ are time-independent and
Hermitian.

To systematically study the perturbation, we
introduce a family of λ-dependent Hamiltonians:

Ĥ(λ) = Ĥ(0) + λδĤ,

where λ ∈ [0, 1].

Figure: The energy eigenvalues of
Ĥ(λ) change as λ goes from 0 to 1.
On the λ = 0 vertical axis, the Ĥ(0)

eigenstates are represented by heavy
dots. For λ = 1, the dots have
shifted.

Note that the perturbations do not create new states; they only modify the eigenstates of the
Ĥ(0) theory. In perturbation theory we will be assuming that the state space of Ĥ(0), called H,
is also the state space of Ĥ(λ). The eigenstates of Ĥ(λ) are ultimately going to be expressed
as superpositions of Ĥ(0) eigenstates.
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Nondegenerate Perturbation Theory
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Nondegenerate Perturbation Theory

We begin by describing the unperturbed Hamiltonian Ĥ(0), which has a discrete spectrum of
eigenstates. The state space H is spanned by an orthonormal basis of energy eigenstates
{|k(0)⟩}.

The eigenvalue equation for the unperturbed Hamiltonian:

Ĥ(0)|k(0)⟩ = E
(0)
k |k(0)⟩, ⟨k(0)|l (0)⟩ = δkl .

Here, k ∈ Z is a label that indexes the eigenstates. The superscript 0 denotes the
unperturbed system.

The eigenvalues E
(0)
k are ordered as:

E
(0)
0 ≤ E

(0)
1 ≤ E

(0)
2 ≤ · · · .

Equalities between energies may occur if the states are degenerate.

For nondegenerate perturbation theory, we focus on a single nondegenerate state |n(0)⟩
with a fixed n. This state satisfies:

· · · < E
(0)
n−1 < E

(0)
n < E

(0)
n+1 < · · · .

If the chosen state is the ground state, we take n = 0, yielding: E
(0)
0 < E

(0)
1 .
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Perturbed States and Energies

When the perturbation is turned on (λ ̸= 0), the eigenstate |n(0)⟩ of Ĥ(0) becomes a
perturbed eigenstate |n⟩λ of Ĥ(λ) with energy En(λ):

Ĥ(λ)|n⟩λ = En(λ)|n⟩λ. (1)

At λ = 0, the perturbed state and energy revert to their unperturbed values:

|n⟩λ=0 = |n(0)⟩, En(λ = 0) = E
(0)
n .

Both the state |n⟩λ and energy En(λ) can be expanded in a Taylor series in λ. For any
function f (λ), we write:

f (λ) =
∞∑
n=0

1

n!
f (n)(0)λn = f (0) + f ′(0)λ+

1

2
f ′′(0)λ2 +

1

3!
f ′′′(0)λ3 + · · · .

Here, f (0), f ′(0), . . . are coefficients independent of λ, representing the function’s value
and derivatives at λ = 0.
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The perturbed states |n⟩λ and energies En(λ) can be expanded in powers of λ:

|n⟩λ = |n(0)⟩+ λ|n(1)⟩+ λ2|n(2)⟩+ λ3|n(3)⟩+ · · · ,

En(λ) = E
(0)
n + λE

(1)
n + λ2E

(2)
n + λ3E

(3)
n + · · · .

The superscripts denote the power of λ that accompanies them. For example:

|n(1)⟩, |n(2)⟩, . . .: Corrections to the state |n(0)⟩.
E

(1)
n ,E

(2)
n , . . .: Corrections to the energy E

(0)
n .

These expansions imply that the perturbed states and energies vary continuously as
functions of λ. Our goal is to calculate:

|n(1)⟩, |n(2)⟩, . . . , and E
(1)
n ,E

(2)
n , . . . .

Since we assume that the state space H of Ĥ(0) is also the state space of Ĥ(λ), the
states

∣∣n(k)〉 above will be determined in terms of superpositions of Ĥ(0) eigenstates.

We will not impose the requirement that |n⟩λ is normalized. It suffices that |n⟩λ is
normalizable, which it will be for sufficiently small perturbations.
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Perturbation Expansions

For λ = 1, the expansions from the Taylor series give:

|n⟩ = |n(0)⟩+ |n(1)⟩+ |n(2)⟩+ |n(3)⟩+ · · · ,

En = E
(0)
n + E

(1)
n + E

(2)
n + E

(3)
n + · · · .

To proceed, we rewrite the Schrödinger equation (1) in the form:[
Ĥ(0) + λδĤ − En(λ)

]
|n⟩λ = 0.

Using the expansions for |n⟩λ and En(λ), we arrive at:[(
Ĥ(0) − E

(0)
n

)
− λ

(
E
(1)
n − δĤ

)
− λ2E

(2)
n − λ3E

(3)
n − · · · − λkE

(k)
n + · · ·

]
×
[
|n(0)⟩+ λ|n(1)⟩+ λ2|n(2)⟩+ λ3|n(3)⟩+ · · ·+ λk |n(k)⟩+ · · ·

]
= 0.

7 / 35



Expanding the equation into a power series in λ, we collect terms corresponding to each
power of λ. Setting each coefficient to zero yields the following conditions:

λ0 : (Ĥ(0) − E
(0)
n )|n(0)⟩ = 0,

λ1 : (Ĥ(0) − E
(0)
n )|n(1)⟩ = (E

(1)
n − δĤ)|n(0)⟩,

λ2 : (Ĥ(0) − E
(0)
n )|n(2)⟩ = (E

(1)
n − δĤ)|n(1)⟩+ E

(2)
n |n(0)⟩,

λ3 : (Ĥ(0) − E
(0)
n )|n(3)⟩ = (E

(1)
n − δĤ)|n(2)⟩+ E

(2)
n |n(1)⟩+ E

(3)
n |n(0)⟩,

...

λk : (Ĥ(0) − E
(0)
n )|n(k)⟩ = (E

(1)
n − δĤ)|n(k−1)⟩+ E

(2)
n |n(k−2)⟩+ · · ·+ E

(k)
n |n(0)⟩.

Each equation is a condition for the vanishing of the coefficient of a specific power of λ.

For λ0, this corresponds to the unperturbed Hamiltonian.

For λ1, the equation allows determination of |n(1)⟩ and E
(1)
n .

Higher-order equations (λ2, λ3, . . .) can be solved iteratively.

The corrections are manifestly λ-independent since λ is merely a parameter for organizing
the expansion.
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A usefull choice: Orthogonality of State Corrections

Without loss of generality, we can assume that all the state corrections |n(k)⟩, with k ≥ 1,
contain no vector along the unperturbed state |n(0)⟩. Explicitly:

⟨n(0)|n(k)⟩ = 0, k ≥ 1.

To show this, suppose the state corrections |n(k)⟩ have components along |n(0)⟩. That is:

|n(k)⟩ = |n(k)⟩′ − ak |n(0)⟩, k ≥ 1.

Then the solution for the full corrected state is

|n⟩λ =
(
1− a1λ− a2λ

2 − · · ·
)
|n(0)⟩+ λ|n(1)⟩′ + λ2|n(2)⟩′ + · · ·

Change its normalization :

|n⟩′λ = |n(0)⟩+ 1

(1− a1λ− a2λ2 − · · · )

[
λ|n(1)⟩′ + λ2|n(2)⟩′ + · · ·

]
.

Expanding the denominator via a Taylor series gives:

|n′λ⟩ = |n(0)⟩+ λ|n(1)⟩′ + λ2
(
|n(2)⟩′ + a1|n(1)⟩′

)
+ . . . .
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Solving the Equations in Perturbation Theory

Start from the Schrödinger equation:

⟨n(0)|
(
Ĥ(0) − E

(0)
n

)
|n(0)⟩ = 0

First-order correction: From the λ term, energy correction is:

E
(1)
n = ⟨n(0)|δĤ|n(0)⟩

Second-order correction: Using λ2, we find:

E
(2)
n = ⟨n(0)|δĤ|n(1)⟩

Recursive relation for higher-order corrections:

E
(k)
n = ⟨n(0)|δĤ|n(k−1)⟩

Corrections to the states arise from solving:

(Ĥ(0) − E
(0)
n )|n(1)⟩ = −(δĤ − E

(1)
n )|n(0)⟩

(Ĥ(0) − E
(0)
n )|n(2)⟩ = −(δĤ − E

(1)
n )|n(1)⟩+ E

(2)
n |n(0)⟩

Key insight: Energy corrections E
(k)
n are determined recursively, and Hermiticity ensures

all corrections are real.
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First Correction to the State in Perturbation Theory

To find the first correction |n(1)⟩, we start from the λ term:(
Ĥ(0) − E

(0)
n

)
|n(1)⟩ =

(
E
(1)
n − δĤ

)
|n(0)⟩

By acting with ⟨k(0)| (k ̸= n) on both sides, we get:

⟨k(0)|
(
Ĥ(0) − E

(0)
n

)
|n(1)⟩ = ⟨k(0)|

(
E
(1)
n − δĤ

)
|n(0)⟩, k ̸= n

On simplifying, using orthonormality and ⟨n(0)|n(0)⟩ = 1, we obtain:

(E
(0)
k − E

(0)
n )⟨k(0)|n(1)⟩ = −⟨k(0)|δĤ|n(0)⟩

Define shorthand for the matrix elements of δĤ in the original basis:

δĤkm ≡ ⟨k(0)|δĤ|m(0)⟩, and Hermiticity implies: δĤkm = (δĤmk)
∗

Substituting this into the equation, we have:

⟨k(0)|n(1)⟩ = −δĤkn

E
(0)
k − E

(0)
n

, k ̸= n

The result highlights that |n(1)⟩ is determined entirely by the unperturbed energies E
(0)
k ,

E
(0)
n , and the matrix elements of the perturbation operator δĤ.
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Summary of First and Second Order Corrections

Using the orthogonality assumption and completeness relation, we write the first-order
correction to the state:

|n(1)⟩ =
∑
k ̸=n

|k(0)⟩⟨k
(0)|δĤ|n(0)⟩
E
(0)
n − E

(0)
k

The first-order correction has contributions from all basis states |k(0)⟩ except |n(0)⟩.
The second-order correction to the energy follows from:

E
(2)
n =

∑
k ̸=n

|⟨n(0)|δĤ|k(0)⟩|2

E
(0)
n − E

(0)
k

where δĤnk = ⟨n(0)|δĤ|k(0)⟩.
In summary, the perturbed states and energies for Ĥ(λ) = Ĥ(0) + λδĤ are:

|n⟩ = |n(0)⟩+ λ
∑
k ̸=n

|k(0)⟩ δĤkn

E
(0)
n − E

(0)
k

+O(λ2)

En = E
(0)
n + λ⟨n(0)|δĤ|n(0)⟩+ λ2

∑
k ̸=n

|δĤkn|2

E
(0)
n − E

(0)
k

+O(λ3)
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Remarks on Ground State Energy

The energy of the (nondegenerate) ground state to first order in λ overstates the exact
ground state energy.

Consider the ground state energy E
(0)
0 + λE

(1)
0 to first order in λ. Writing this in terms of

expectation values, with |0(0)⟩ denoting the unperturbed ground state:

E
(0)
0 + λE

(1)
0 = ⟨0(0)|Ĥ(λ)|0(0)⟩

where Ĥ(λ) = Ĥ(0) + λδĤ. By the variational principle, this value overstates the ground
state energy E0(λ):

E
(0)
0 + λE

(1)
0 ≥ E0(λ).

The second-order correction to the ground state energy is always negative, as given by:

E
(2)
0 = −λ2

∑
k ̸=0

|δĤk0|2

E
(0)
k − E

(0)
0

< 0.

Here, each term in the sum is negative since the unperturbed excited state energies E
(0)
k

(for k ̸= 0) exceed the unperturbed ground state energy E
(0)
0 .
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Second-Order Energy Corrections and Level Repulsion

The second-order correction to the energy of the
|n(0)⟩ eigenstate exhibits level repulsion:

Levels with k > n push the energy down.
Levels with k < n push the energy up.

The correction is given by:

E
(2)
n = −λ2

∑
k ̸=n

|δĤkn|2

E
(0)
k − E

(0)
n

= −λ2
∑
k>n

|δĤkn|2

E
(0)
k − E

(0)
n

+ λ2
∑
k<n

|δĤkn|2

E
(0)
n − E

(0)
k

.

The first term on the right-hand side corresponds to
the negative contribution from higher-energy
states.

The second term corresponds to the positive
contribution from lower-energy states.
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Degenerate Perturbation Theory
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Degenerate Perturbation Theory: Toy Model

Consider Ĥ(λ) = Ĥ(0) + λδĤ, where:

Ĥ(0) =

(
1 0
0 1

)
, δĤ =

(
0 1
1 0

)
.

Ĥ(0) has degenerate eigenvalues:

|1(0)⟩ =
(
1
0

)
, |2(0)⟩ =

(
0
1

)
, E

(0)
1 = E

(0)
2 = 1.

Perturbation breaks degeneracy. Exact eigenvalues:

E = 1± λ.
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Degenerate Perturbation Theory: First-Order Predictions

First-order energy corrections predicted by
nondegenerate theory:

E1(λ) = E
(0)
1 + λδĤ11 = 1 + λ · 0 = 1,

E2(λ) = E
(0)
2 + λδĤ22 = 1 + λ · 0 = 1.

First-order predictions are incorrect:

The eigenvalues remain degenerate, which is
inconsistent with the perturbation.
Exact eigenvalues are:

Eigenvalues: 1 + λ, 1− λ.

Exact eigenvectors of Ĥ(λ):

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
.

Key point:

We must choose the basis in
the degenerate subspace of
Ĥ(0) to get states that vary
continuously as λ = 0.
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Degenerate Perturbation Theory: Resolving the Ambiguity

Degenerate eigenstates of Ĥ(0) span a subspace:

Span: |1(0)⟩, |2(0)⟩.

Perturbation δĤ defines a good basis within this subspace.

Diagonalize δĤ in the degenerate subspace:

δĤ =

(
0 1
1 0

)
.

Good basis:

|1⟩ = 1√
2

(
1
1

)
, |2⟩ = 1√

2

(
1
−1

)
.

Energy corrections:
E1(λ) = 1 + λ, E2(λ) = 1− λ.
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Summary of Degenerate Perturbation Theory

Key ideas:

Degenerate eigenstates require a careful choice of zeroth-order states.
Good basis is determined by diagonalizing δĤ in the degenerate subspace.

Implications:

Breaks degeneracy to first order.
Corrects zeroth-order states for higher-order consistency.

Example illustrated:

Toy model shows exact solution matches perturbative results after choosing the good basis.

19 / 35



Degenerate Subspace and Basis Setup

We focus on a degenerate subspace of eigenvectors of Ĥ(0), where N > 1 eigenstates

share the same eigenvalue E
(0)
n .

In the eigenbasis, Ĥ(0) is diagonal:

Ĥ(0) = diag(E
(0)
1 ,E

(0)
2 , . . . ,E

(0)
n , . . . ,E

(0)
n︸ ︷︷ ︸

N

, . . .).

Arbitrary orthonormal basis vectors are chosen for the degenerate subspace VN :

|n(0); 1⟩, |n(0); 2⟩, . . . , |n(0);N⟩,

satisfying

⟨n(0); p|n(0); q⟩ = δpq, Ĥ(0)|n(0); k⟩ = E
(0)
n |n(0); k⟩.

The degenerate subspace VN is:

VN = span
{
|n(0); k⟩, k = 1, . . . ,N

}
.
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State Space Decomposition

The total state space H is decomposed as a direct sum:

H = VN ⊕ V⊥,

where V⊥ is the orthogonal complement of VN .

Basis for V⊥ is denoted by |p(0)⟩ (p ∈ Z), satisfying: ⟨p(0)|n(0); k⟩ = 0.

Key distinctions:

States in VN : |n(0); k⟩ (two labels, degenerate subspace).
States in V⊥: |p(0)⟩ (single label, orthogonal to VN).

Since the basis states |n(0); k⟩ of VN were chosen arbitrarily, they are generally not good
zeroth-order states.

A perturbation δĤ that breaks the degeneracy will select the good basis.

The basis vectors in the good basis are linear combinations of the basis vectors |n(0); k⟩,
but we must find those linear combinations.

In degenerate perturbation theory, the zeroth-order states are not obvious!
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Good Basis

Express the good basis vectors |ψ(0)
I ⟩ in terms of the original basis vectors:

|ψ(0)
I ⟩ =

N∑
k=1

|n(0); k⟩a(0)Ik , I = 1, . . . ,N.

If the degeneracy is broken by δĤ the states will be automatically orthonormal:

⟨ψ(0)
I |ψ(0)

J ⟩ = δIJ .

As soon as these states are perturbed, their energies are different, and thus they are
necessarily orthonormal. If they are orthonormal for arbitrarily small perturbations, they
will remain orthonormal for zero perturbation.

Expand states and energies in powers of λ:

|ψI ⟩λ = |ψ(0)
I ⟩+ λ|ψ(1)

I ⟩+ λ2|ψ(2)
I ⟩+ · · · ,

EnI (λ) = E
(0)
n + λE

(1)
nI + λ2E

(2)
nI + · · · .

The energy expansion accounts for the degeneracy: the index I does not appear in the
zeroth-order energies.
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Degenerate Perturbation Theory: Order-by-Order Equations

Introducing the above expansions into the Schrödinger equation:

Ĥ(λ) |ψI ⟩λ = EnI (λ) |ψI ⟩λ .

Order-by-order equations:

λ0 :
(
Ĥ(0) − E

(0)
n

)
|ψ(0)

I ⟩ = 0, trivial

λ1 :
(
Ĥ(0) − E

(0)
n

)
|ψ(1)

I ⟩ =
(
E
(1)
nI − δĤ

)
|ψ(0)

I ⟩,

λ2 :
(
Ĥ(0) − E

(0)
n

)
|ψ(2)

I ⟩ = E
(1)
nI |ψ(1)

I ⟩+ E
(2)
nI |ψ(0)

I ⟩ − δĤ|ψ(1)
I ⟩. (2)

Project the λ1 equation onto |n(0); ℓ⟩ (LHS vanishes):

0 = ⟨n(0); ℓ|(E (1)
nI − δĤ)|ψ(0)

I ⟩.

Then, insert |ψ(0)
I ⟩ =

∑N
k=1 |n(0); k⟩a

(0)
Ik

0 =
N∑

k=1

(
E
(1)
nI a

(0)
Ik δℓk − ⟨n(0); ℓ|δĤ|n(0); k⟩a(0)Ik

)
.
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Define the matrix elements of δĤ in the degenerate subspace:

δĤnℓ,nk ≡ ⟨n(0); ℓ|δĤ|n(0); k⟩. [δĤ]ℓk ≡ δĤnℓ,nk .

where we define the N × N matrix [δĤ] as the restriction of δĤ to the degenerate
subspace.

Matrix equation:
N∑

k=1

(
[δĤ]ℓka

(0)
Ik − E

(1)
nI δℓka

(0)
Ik

)
= 0.

(
[δĤ]− E

(1)
nI 1

)
a
(0)
I = 0.

a
(0)
I is the eigenvector of [δĤ] with eigenvalue E

(1)
nI .

We have therefore determined the good basis and the leading energy corrections: the
good basis is that composed by the eigenvectors of [δĤ], with energy corrections given by
the associated eigenvalues.
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Summary of Results for the Good Basis

In the good basis, the perturbation δĤ is diagonal:

δĤIJ = E
(1)
nI δIJ .

The eigenvalues of δĤ give the first-order corrections to the energy:

E
(1)
nI = δĤII .

Full expression for energy corrections:

EnI = E
(0)
n + λδĤII +O(λ2).

The basis |ψ(0)
I ⟩, I = 1, . . . ,N makes δĤ diagonal in the space VN .
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Remarks on Degenerate Perturbation Theory (1)

The relation
E
(1)
nI = δĤII

is always true, even if the degeneracy is not lifted. The degeneracy is lifted when all
eigenvalues of [δĤ] are different:

E
(1)
nI ̸= E

(1)
nJ , whenever I ̸= J, I , J = 1, . . . ,N.

If the degeneracy is lifted, the basis states |ψ(0)
I ⟩ that make δĤ diagonal in VN are

confirmed to form a good basis. These states get deformed continuously as λ becomes
nonzero.

If the degeneracy is not lifted to first order, [δĤ] has degeneracies, and the eigenvectors
are not uniquely fixed. The determination of the good basis has to be attempted to
second order.
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Remarks on Degenerate Perturbation Theory (2)

The perturbation δĤ is diagonalized in the subspace VN , but δĤ is not diagonal on the
whole state space; it is only diagonal within VN .

Action of δĤ on the basis states:

δĤ|ψ(0)
I ⟩ =

∑
J

|ψ(0)
J ⟩⟨ψ(0)

J |δĤ|ψ(0)
I ⟩+

∑
p

|p(0)⟩⟨p(0)|δĤ|ψ(0)
I ⟩.

Expanding terms, we find:

δĤ|ψ(0)
I ⟩ = |ψ(0)

I ⟩E (1)
nI +

∑
p

|p(0)⟩⟨p(0)|δĤ|ψ(0)
I ⟩.

This shows that the states |ψ(0)
I ⟩ are almost eigenstates of δĤ, with eigenvalues equal

to the first-order energy corrections.

The failure arises from an extra state along V⊥.
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Remarks on Degenerate Perturbation Theory (3)

Rule: The matrix [δĤ] is diagonal for a choice of basis in VN if for any two
different basis vectors there is a Hermitian operator K̂ that commutes with δH for
which the two basis vectors are K̂ eigenstates with different eigenvalues.

This rule can be established as follows:

Assume we are testing a VN basis |n(0); k⟩, with k = 1, . . . ,N.
Take two basis states |n(0); p⟩ and |n(0); q⟩, with p ̸= q, and assume these states have
different K̂ eigenvalues kp and kq.

Since [δĤ, K̂ ] = 0, we have:

0 = ⟨n(0); p|[δĤ, K̂ ]|n(0); q⟩ = (kq − kp)⟨n(0); p|δĤ|n(0); q⟩.

Since kp ̸= kq, this implies:

⟨n(0); p|δĤ|n(0); q⟩ = 0.
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Remarks on Degenerate Perturbation Theory (3)

This implies that the off-diagonal matrix element of δĤ vanishes.

For any pair of basis vectors where such an operator K̂ exists, all off-diagonal matrix
elements of δĤ vanish.

In practical applications:

A single operator K is often sufficient to verify a good basis, provided it has distinct
eigenvalues for each basis vector.
In more complex cases, several Hermitian operators (K̂1, K̂2, . . .) may be required to test
subsets of off-diagonal matrix elements.
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Corrections to 1st-Order States and 2nd-Order Energies

To find the first-order state corrections and second-order energy corrections, we analyze
equations (2) in two steps:

1 Use the order λ equation to calculate the components of |ψ(1)
I ⟩ in V⊥.

2 Form the overlap of the order λ2 equation with ⟨ψ(0)
K | to determine the second-order energy

correction E
(2)
nI and the component of |ψ(1)

I ⟩ in VN .

It may be surprising that we need to go to second order in λ to complete the
determination of the first-order correction to the state.

This analysis will make it clear why this is necessary.
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Corrections to 1st-Order States and Step 1

Step 1: Acting on the order λ equation in (2) with ⟨p(0)| gives:(
E
(0)
p − E

(0)
n

)
⟨p(0)|ψ(1)

I ⟩ = ⟨p(0)|(E (1)
nI − δĤ)|ψ(0)

I ⟩ = −⟨p(0)|δĤ|ψ(0)
I ⟩,

where we used the orthogonality of V⊥ and VN .

Define:
δĤpI ≡ ⟨p(0)|δĤ|ψ(0)

I ⟩,
leading to:

⟨p(0)|ψ(1)
I ⟩ = −

δĤpI

E
(0)
p − E

(0)
n

.

State Correction in V⊥:

|ψ(1)
I ⟩V⊥ = −

∑
p

|p(0)⟩δĤpI

E
(0)
p − E

(0)
n

.

The order λ equation provides no further information about the component of |ψ(1)
I ⟩ along the

degenerate subspace VN , completing Step 1.
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Corrections (Step 2)

Step 2: Having determined the component of |ψ(1)
I ⟩ in V⊥, we now write:

|ψ(1)
I ⟩ = −

∑
p

|p(0)⟩δĤpI

E
(0)
p − E

(0)
n

+ |ψ(1)
I ⟩VN

.

Hitting the order λ2 equation with ⟨ψ(0)
K |, the LHS vanishes:

0 = −⟨ψ(0)
K |

(
E
(1)
nI − δĤ

)∑
p

|p(0)⟩
δĤpI

E
(0)
p − E

(0)
n

+ ⟨ψ(0)
K |

(
E
(1)
nI − δĤ

)
|ψ(1)

I ⟩VN
+ E

(2)
nI δKI (3)

Simplifying the 2nd term using δĤ being diagonal in VN :

⟨ψ(0)
K |δĤ|ψ(1)

I ⟩VN
= E

(1)
nK ⟨ψ(0)

K |ψ(1)
I ⟩VN

= E
(1)
nK ⟨ψ(0)

K |ψ(1)
I ⟩.

We obtain: ∑
p

δĤKpδĤpI

E
(0)
p − E

(0)
n

+
(
E
(1)
nI − E

(1)
nK

)
⟨ψ(0)

K |ψ(1)
I ⟩+ E

(2)
nI δKI = 0.
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The second-order correction to the energy is found by setting K = I and using
δĤIp = (δĤpI )

∗:

E
(2)
nI = −

∑
p

|δĤpI |2

E
(0)
p − E

(0)
n

.

For I ̸= K , the equation determines the component of |ψ(1)
I ⟩ along |ψ(0)

K ⟩:

∑
p

δĤKpδĤpI

E
(0)
p − E

(0)
n

+
(
E
(1)
nI − E

(1)
nK

)
⟨ψ(0)

K |ψ(1)
I ⟩ = 0.
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Solving for ⟨ψ(0)
K |ψ(1)

I ⟩VN
, we have:

⟨ψ(0)
K |ψ(1)

I ⟩ = − 1

E
(1)
nI − E

(1)
nK

∑
p

δĤKpδĤpI

E
(0)
p − E

(0)
n

, I ̸= K .

Therefore, the first-order correction to the state in VN is:

|ψ(1)
I ⟩VN

= −
∑
K ̸=I

|ψ(0)
K ⟩ 1

E
(1)
nI − E

(1)
nK

∑
p

δĤKpδĤpI

E
(0)
p − E

(0)
n

.

It may seem that this first-order correction to the state is higher order: its numerator

contains two powers of δĤ. But this expression also has a denominator E
(1)
nI − E

(1)
nK in

which each term is of order δĤ. All in all, the correction to the state is properly first
order in δĤ.
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Summary of Degenerate Perturbation Theory

Summarizing our results, we have the following expressions for degenerate perturbation
theory with degeneracies lifted at O(λ):

|ψI ⟩λ = |ψ(0)
I ⟩ − λ

∑
p

δĤpI

E
(0)
p − E

(0)
n

|p(0)⟩+
∑
K ̸=I

|ψ(0)
K ⟩

E
(1)
nI − E

(1)
nK

∑
p

δĤKpδĤpI

E
(0)
p − E

(0)
n

+ O(λ2),

En(λ) = E
(0)
n + λδĤII − λ2

∑
p

|δĤpI |2

E
(0)
p − E

(0)
n

+ O(λ3), E
(1)
nI = δĤII .

These expressions summarize the corrections to states and energies for degenerate
perturbation theory.
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