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1 Time-Dependent Hamiltonians

Time-dependent Hamiltonians are essential for studying various physical processes, such
as spins in time-dependent magnetic fields and atoms subject to electromagnetic radiation.
The Schrödinger equation with time-dependent Hamiltonians is generally harder to solve
than its time-independent counterpart.

Time Evolution and the Unitary Operator: For time-dependent Hamiltonians Ĥ(t),
solutions are often written in terms of a unitary operator U(t) that evolves any physical
state over time. However, there is no simple expression for U(t); it can only be expressed
as a formal power series involving nested integrals of time-ordered products of the
Hamiltonian Ĥ(t).
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Energy Eigenstates and Time Dependence: A time-dependent Ĥ(t) does not have
energy eigenstates. The existence of energy eigenstates relies on factorization of solutions
Ψ(x, t) into a space-dependent partψ(x) and a time-dependent part, e−iEt/ℏ, withE being
the energy. This factorization is only possible for time-independent Hamiltonians. For a
time-independent Ĥ:

Ĥψ(x) = Eψ(x)

and
Ψ(x, t) = ψ(x)e−iEt/ℏ

solves the full Schrödinger equation:

iℏ∂tΨ = ĤΨ.
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Instantaneous Eigenstates: For time-dependent Hamiltonians, one might consider in-
stantaneous eigenstates ψ(x, t), satisfying:

Ĥ(t)ψ(x, t) = E(t)ψ(x, t),

for each value of t. These states, however, are not solutions to the time-dependent
Schrödinger equation:

iℏ∂tΨ(x, t) = Ĥ(t)Ψ(x, t).

Perturbative Approach: We study time-dependent Hamiltonians using perturbation
theory, assuming the time dependence arises as a perturbation:

Ĥ(t) = Ĥ(0) + δH(t),

where Ĥ(0) is time-independent and has a well-defined spectrum, while δH(t) introduces
time dependence.
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Time Evolution: The goal is to solve the time-dependent Schrödinger equation (suppress
the labels associated with space and other d.o.f.):

iℏ
∂

∂t
|Ψ(t)⟩ =

(
Ĥ(0) + δH(t)

)
|Ψ(t)⟩.

Perturbation Timeline: In many scenarios, δH(t) is nonzero only within a finite time
interval, as illustrated:

Eigenstate Basis: For t < ti, the system is in an eigenstate or a linear combination of
eigenstates of Ĥ(0). After the perturbation vanishes (t > tf ), the system can be described
similarly. During the perturbation, eigenstates of Ĥ(0) provide a complete basis for
expressing the time-dependent state.
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Physical Questions: Time-dependent perturbation theory helps answer questions about
transitions between eigenstates. For instance, consider a hydrogen atom initially in
its ground state. An electromagnetic field is applied for a finite time interval. Time-
dependent perturbation theory can determine the probabilities of finding the atom in
various excited states after the perturbation ends.
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2 The Interaction Picture

In order to solve efficiently for the state |Ψ(t)⟩, we introduce the interaction picture of
quantum mechanics. This picture combines elements of the Heisenberg and Schrödinger
pictures. We use the known Hamiltonian Ĥ(0) to define Heisenberg operators, and the
perturbation δH to write a Schrödinger equation.

Time Evolution in the Heisenberg Picture: For any Hamiltonian, the unitary operator
U(t) generates time evolution:

|Ψ(t)⟩ = U(t)|Ψ(0)⟩.

The Heisenberg operator ÂH corresponding to a Schrödinger operator ÂS is defined
through expectation values:

⟨Ψ(t)|ÂS|Ψ(t)⟩ = ⟨Ψ(0)|U †(t)ÂSU(t)|Ψ(0)⟩ = ⟨Ψ(0)|ÂH|Ψ(0)⟩,

where:
ÂH ≡ U †(t)ÂSU(t).
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Unitary Operator Properties: The operator U † “brings states to rest”:

U †(t)|Ψ(t)⟩ = |Ψ(0)⟩.

For the time-independent Hamiltonian Ĥ(0), the unitary time evolution operator is:

U0(t) = e−iĤ
(0)t/ℏ.

Auxiliary State Definition: To simplify the evolution problem, define the auxiliary state:

|Ψ̃(t)⟩ ≡ eiĤ
(0)t/ℏ|Ψ(t)⟩. (1)

This auxiliary state removes the time dependence generated by Ĥ(0). If δH = 0, then
|Ψ̃(t)⟩ is constant. The original state can be recovered:

|Ψ(t)⟩ = e−iĤ
(0)t/ℏ|Ψ̃(t)⟩.

Initial Condition: At t = 0, the auxiliary state agrees with the original state:

|Ψ̃(0)⟩ = |Ψ(0)⟩.
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Schrödinger Equation in the Interaction Picture: Differentiating the auxiliary state
equation (1) and using the Schrödinger equation for |Ψ(t)⟩:

iℏ
d

dt
|Ψ̃(t)⟩ = −Ĥ(0)|Ψ̃(t)⟩ + eiĤ

(0)t/ℏ
(
Ĥ(0) + δH(t)

)
|Ψ(t)⟩

=
[
−Ĥ(0) + eiĤ

(0)t/ℏ
(
Ĥ(0) + δH(t)

)
e−iĤ

(0)t/ℏ
]
|Ψ̃(t)⟩

= eiĤ
(0)t/ℏδH(t)e−iĤ

(0)t/ℏ|Ψ̃(t)⟩,

where terms involving Ĥ(0) cancel. Thus:

iℏ
d

dt
|Ψ̃(t)⟩ = δ̃H(t)|Ψ̃(t)⟩,

where:
δ̃H(t) ≡ eiĤ

(0)t/ℏδH(t)e−iĤ
(0)t/ℏ.

Interpretation of δ̃H(t): The operator δ̃H(t) is the Heisenberg version of δH(t) with
respect to Ĥ(0). It generates the time evolution of |Ψ̃(t)⟩, which is described by a
Schrödinger equation.
Exact Analysis: The interaction picture allows us to simplify the Schrödinger equation
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under time-dependent perturbations. If δH(t) = 0, |Ψ̃(t)⟩ remains time-independent, as
it equals |Ψ(0)⟩.
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Example: Nuclear Magnetic Resonance with rotating magnetic field

The Hamiltonian for a particle with a magnetic moment inside a magnetic field is:

Ĥ = ω · Ŝ

where Ŝ is the spin operator, and ω is the Larmor angular velocity, a function of the
magnetic field.
The unperturbed Hamiltonian is:

Ĥ(0) = ω0Sz =
ℏ
2
ω0σz

which corresponds to a magnetic field in the z-direction. In NMR applications, longitu-
dinal magnetic fields are of the order of a tesla, and Larmor frequencies ω0 ≈ 100MHz

are common.
To this unperturbed Hamiltonian, we add the effect of a magnetic field in the (x, y)-plane,
rotating with the Larmor frequency ω0:

δH(t) = Ω
(
Ŝx cosω0t + Ŝy sinω0t

)
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where Ω is another frequency determined by the strength of the rotating magnetic field.
This is a specific case of the general NMR problem, where the system is at resonance.
In the interaction picture, the perturbation δ̃H(t) is defined as:

δ̃H(t) = exp
[
iω0t

σz
2

]
Ω
(
Ŝx cosω0t + Ŝy sinω0t

)
exp

[
−iω0t

σz
2

]
The right-hand side has zero time derivative, and thus (Exercise):

δ̃H(t) = ΩŜx

Since δ̃H(t) is time-independent, the Schrödinger equation for |Ψ̃(t)⟩ is:

|Ψ̃(t)⟩ = exp

[
−iδ̃Ht

ℏ

]
|Ψ̃(0)⟩ = exp

[
−iΩtσx

2

]
|Ψ(0)⟩

The complete solution for the state evolution is:

|Ψ(t)⟩ = exp

[
−iĤ

(0)t

ℏ

]
|Ψ̃(t)⟩ = exp

[
−iω0t

σz
2

]
exp

[
−iΩtσx

2

]
|Ψ(0)⟩

The spin, aligned along ẑ at t = 0, will move toward the x, y-plane with angular velocity
Ω while simultaneously rotating around the z-axis with angular velocity ω0.
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Interaction picture as seen in a basis

Consider an orthonormal basis |n⟩ for the Hamiltonian Ĥ(0):

Ĥ(0)|n⟩ = En|n⟩

where the states |n⟩ and their energies En remain unperturbed.
Ansatz: The interaction-picture state can be written as:

|Ψ̃(t)⟩ =
∑
n

cn(t)|n⟩

where the cn(t) are time-dependent coefficients.
The original wavefunction in terms of the interaction picture is:

|Ψ(t)⟩ = e−iĤ
(0)t/ℏ|Ψ̃(t)⟩ =

∑
n

cn(t)e
−iEnt/ℏ|n⟩

Substituting the ansatz into the interaction picture Schrödinger equation gives:

iℏ
d

dt

∑
m

cm(t)|m⟩ = δ̃H(t)
∑
n

cn(t)|n⟩
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Resolving the identity on the right-hand side:∑
m

iℏċm(t)|m⟩ =
∑
m,n

δ̃Hmn(t)cn(t)|m⟩

where the matrix elements are defined as:

δ̃Hmn(t) = ⟨m|δ̃H(t)|n⟩

Equating coefficients of |m⟩, the evolution equations for the coefficients are:

iℏċm(t) =
∑
n

δ̃Hmn(t)cn(t)

The matrix elements δ̃Hmn(t) in terms of the original variables are:

δ̃Hmn(t) = ei(Em−En)t/ℏ⟨m|δH(t)|n⟩

Defining the frequency difference:

ωmn ≡
Em − En

ℏ
we write:

δ̃Hmn(t) = eiωmntδHmn(t)
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The coupled differential equations for cm(t) are:

iℏċm(t) =
∑
n

eiωmntδHmn(t)cn(t)

Once the coefficients cm(t) are determined, the state is given by:

|Ψ(t)⟩ =
∑
n

cn(t)e
−iEnt/ℏ|n⟩

These equations are exact and hold for arbitrary δH(t), whether small or large.
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Example: Transitions in a two-state system

Consider a two-state system with basis states |1⟩ and |2⟩, which are eigenstates of Ĥ(0)

with energiesE1 andE2, respectively. The off-diagonal perturbation δH(t) is defined as:

δH(t) =

 0 f (t)

f ∗(t) 0


where f (t) is only nonzero for −T < t < T and vanishes for t ≤ −T and t ≥ T .
An example of the function f (t) is shown in the figure below:

Figure 1: A function f (t) that vanishes for t > |T |.
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If the system is in |1⟩ at t = −∞, the state evolves as:

|Ψ(t)⟩ = e−iE1t/ℏ|1⟩, for −∞ < t ≤ −T

If the state at t = T is
|Ψ(T )⟩ = γ1|1⟩ + γ2|2⟩

with γ1 and γ2 constants, then the state for any time t > T will be

|Ψ(t)⟩ = γ1|1⟩e−iE1(t−T )/ℏ + γ2|2⟩e−iE2(t−T )/ℏ

and the probability of finding the system in |2⟩ is:

p2(t) = |⟨2|Ψ(t)⟩|2 = |γ2|2

which is time-independent for t > T .
The state during the perturbation interval is written as:

|Ψ(t)⟩ = c1(t)e
−iE1t/ℏ|1⟩ + c2(t)e

−iE2t/ℏ|2⟩

with initial conditions:
c1(−T ) = 1, c2(−T ) = 0
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The coupled differential equations for the coefficients are:

iℏċ1(t) = eiω12tδH12(t)c2(t)

iℏċ2(t) = eiω21tδH21(t)c1(t)

where ω12 = −ω21 ≡ (E1 − E2)/ℏ. The couplings are off-diagonal because δH11 =

δH22 = 0. Using the form of the δH matrix elements, we find that

iℏċ1(t) = eiω12tf (t)c2(t)

iℏċ2(t) = e−iω12tf ∗(t)c1(t)

These equations, along with the initial conditions, determine the solution for t > −T .
Numerical or perturbative methods may be used to solve them.
Once the solution is obtained, the probability of finding the state in |2⟩ at t =∞ is:

p2(∞) = |c2(T )|2
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3 Perturbative Solution in the Interaction Picture

To develop a perturbative solution to the interaction picture Schrödinger equation:

iℏ
d

dt
|Ψ̃(t)⟩ = δ̃H(t)|Ψ̃(t)⟩

Introduce a small parameter λ to systematically expand the perturbation in the time-
dependent Hamiltonian:

Ĥ(t) = Ĥ(0) + λδH(t)

The interaction picture Schrödinger equation becomes:

iℏ
d

dt
|Ψ̃(t)⟩ = λδ̃H(t)|Ψ̃(t)⟩

Expand the state |Ψ̃(t)⟩ in powers of λ:

|Ψ̃(t)⟩ =
∣∣∣Ψ̃(0)(t)

〉
+ λ

∣∣∣Ψ̃(1)(t)
〉
+ λ2

∣∣∣Ψ̃(2)(t)
〉
+O

(
λ3
)

Insert the expansion into the Schrödinger equation. Equating terms of like powers of λ,
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we get:

iℏ∂t
∣∣∣Ψ̃(0)(t)

〉
= 0,

iℏ∂t
∣∣∣Ψ̃(1)(t)

〉
= δ̃H

∣∣∣Ψ̃(0)(t)
〉
,

iℏ∂t
∣∣∣Ψ̃(2)(t)

〉
= δ̃H

∣∣∣Ψ̃(1)(t)
〉
,

... = ...

iℏ∂t
∣∣∣Ψ̃(n+1)(t)

〉
= δ̃H

∣∣∣Ψ̃(n)(t)
〉
.

The origin of this pattern lies in the explicit λ multiplying the right-hand side of the
Schrödinger equation. Thus, the time derivative of the nth-order ket is coupled to the
perturbation δ̃H acting on the (n− 1)th-order ket.
|Ψ̃(t)⟩ and |Ψ(t)⟩ agree at t = 0:

|Ψ̃(0)⟩ = |Ψ(0)⟩ =
∣∣∣Ψ̃(0)(0)

〉
+ λ

∣∣∣Ψ̃(1)(0)
〉
+ λ2

∣∣∣Ψ̃(2)(0)
〉
+O(λ3)

Matching terms for all powers of λ gives:∣∣∣Ψ̃(0)(0)
〉
= |Ψ(0)⟩,

∣∣∣Ψ̃(n)(0)
〉
= 0, n ≥ 1
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Solving the first equation in the perturbation series:∣∣∣Ψ̃(0)(t)
〉
=
∣∣∣Ψ̃(0)(0)

〉
= |Ψ(0)⟩

For the O(λ) term:
iℏ∂t

∣∣∣Ψ̃(1)(t)
〉
= δ̃H(t)|Ψ(0)⟩

Its solution is: ∣∣∣Ψ̃(1)(t)
〉
=

∫ t

0

δ̃H(t′)

iℏ
|Ψ(0)⟩ dt′

For the O(λ2) term:
iℏ∂t

∣∣∣Ψ̃(2)(t)
〉
= δ̃H(t)

∣∣∣Ψ̃(1)(t)
〉

The solution becomes: ∣∣∣Ψ̃(2)(t)
〉
=

∫ t

0

δ̃H(t′)

iℏ

∣∣∣Ψ̃(1)(t′)
〉
dt′

Substituting
∣∣∣Ψ̃(1)(t′)

〉
, the nested integral form is:

∣∣∣Ψ̃(2)(t)
〉
=

∫ t

0

δ̃H(t′)

iℏ
dt′

∫ t′

0

δ̃H(t′′)

iℏ
|Ψ(0)⟩ dt′′
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The complete solution is:

|Ψ(t)⟩ = e−iĤ
(0)t/ℏ

(
|Ψ(0)⟩ +

∣∣∣Ψ̃(1)(t)
〉
+
∣∣∣Ψ̃(2)(t)

〉
+ · · ·

)
Transition probability Pm←n(t) from |n⟩ to |m⟩ with m ̸= n:

Pm←n(t) = |⟨m|Ψ(t)⟩|2

Using the perturbative expansion:

Pm←n(t) =
∣∣∣⟨m|(|Ψ(0)⟩ + ∣∣∣Ψ̃(1)(t)

〉
+
∣∣∣Ψ̃(2)(t)

〉
+ · · ·

)∣∣∣2
For m ̸= n, and keeping only the first-order term:

P (1)
m←n(t) =

∣∣∣∣∣⟨m|
∫ t

0

δ̃H(t′)

iℏ
|n⟩ dt′

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ t

0

⟨m|δ̃H(t′)|n⟩
iℏ

dt′

∣∣∣∣∣
2

Recalling the relation between matrix elements of δ̃H and δH:

P (1)
m←n(t) =

∣∣∣∣∫ t

0

eiωmnt
′δHmn(t

′)

iℏ
dt′

∣∣∣∣2 , m ̸= n

This is the key result for transition probabilities to first order in perturbation theory.
24



Perturbative solution in a basis

To describe the state evolution, we use the expansion:

|Ψ̃(t)⟩ =
∑
n

cn(t)|n⟩

The initial condition reads:

|Ψ(0)⟩ =
∑
n

cn(0)|n⟩ =
∣∣∣Ψ̃(0)(0)

〉
Writing each order term:∣∣∣Ψ̃(k)(t)

〉
=
∑
n

c(k)n (t)|n⟩, k = 0, 1, 2, . . .

The perturbative expansion of the state:

|Ψ̃(t)⟩ =
∣∣∣Ψ̃(0)(t)

〉
+ λ

∣∣∣Ψ̃(1)(t)
〉
+ λ2

∣∣∣Ψ̃(2)(t)
〉
+O

(
λ3
)

Coefficients for the expansion:

cn(t) = c(0)n (t) + λc(1)n (t) + λ2c(2)n (t) + · · ·
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Since
∣∣∣Ψ̃(0)(t)

〉
is constant:∣∣∣Ψ̃(0)(t)

〉
=
∑
n

c(0)n (t)|n⟩ = |Ψ(0)⟩ =
∑
n

cn(0)|n⟩

We conclude:
c(0)n (t) = c(0)n (0) = cn(0)

The expansion simplifies:

cn(t) = cn(0) + λc(1)n (t) + λ2c(2)n (t) + · · ·

For n ≥ 1, initial conditions give:

c(k)n (0) = 0, k ≥ 1

Using the solution for
∣∣∣Ψ̃(1)(t)

〉
:

∣∣∣Ψ̃(1)(t)
〉
=
∑
n

c(1)n (t)|n⟩ =
∫ t

0

δ̃H (t′)

iℏ
dt′

∑
n

cn(0)|n⟩
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Projecting onto ⟨m|, we find:

c(1)m (t) =
∑
n

∫ t

0

⟨m|δ̃H (t′) |n⟩
iℏ

cn(0)dt
′

Expressing in terms of δH:

c(1)m (t) =
∑
n

∫ t

0

dt′eiωmnt
′δHmn (t

′)

iℏ
cn(0)

The probability of being in state |m⟩ at time t:

Pm(t) = |⟨m | Ψ(t)⟩|2 = |⟨m | Ψ̃(t)⟩|2 = |cm(t)|2

Using the expansion of cm(t):

Pm(t) =
∣∣∣cm(0) + c(1)m (t) +O

(
(δH)2

)∣∣∣2
If cm(0) ̸= 0:

Pm(t) = |cm(0)|2 + cm(0)
∗c(1)m (t) + c(1)m (t)∗cm(0) +O

(
δH2

)
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If cm(0) = 0:
Pm(t) =

∣∣∣c(1)m (t)
∣∣∣2 +O (

(δH)3
)

This is equivalent to earlier results when |n⟩ is the initial state.
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NMR at resonance in perturbation theory

Consider the case of NMR at resonance, where the rotating magnetic field is treated as a
perturbation. The spin-state evolution is obtained to first order in the perturbation.
In the previous example, we determined the exact solution for the state |Ψ̃(t)⟩, given by:

|Ψ̃(t)⟩ = exp

[
− i
ℏ
ΩŜxt

]
|Ψ(0)⟩ = exp

[
−iΩtσx

2

]
|Ψ(0)⟩

To check consistency with first-order perturbation theory, we use:∣∣∣Ψ̃(1)(t)
〉
=

∫ t

0

δ̃H (t′)

iℏ
|Ψ(0)⟩dt′

Substituting δ̃H(t) = ΩŜx, we compute:∣∣∣Ψ̃(1)(t)
〉
= − i

ℏ
ΩtŜx|Ψ(0)⟩ = −iΩt

σx
2
|Ψ(0)⟩

This result corresponds to the first nontrivial term in the Taylor expansion of the exact
solution:

|Ψ̃(t)⟩ = exp
[
−iΩtσx

2

]
|Ψ(0)⟩
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The first-order result is an accurate description of the system for short times, where
Ωt≪ 1. However, for arbitrarily long times, this approximation becomes less reliable.
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4 Constant Perturbations

Consider a constant perturbation, where the Hamiltonian is time-independent, but we use
time-dependent perturbation theory for analysis. The perturbed Hamiltonian is given by:

Ĥ = Ĥ(0) + V

Assuming the initial state at t = 0 is an eigenstate of Ĥ(0), the effect of the perturbation
V at a later time t0 can be studied using first-order time-dependent perturbation theory.
The transition amplitude to first order is:

c(1)m (t) =
∑
n

∫ t

0

dt′eiωmnt
′Vmn
iℏ

cn(0)

Representing the initial state |i⟩ at t = 0, with cn(0) = δn,i, the transition amplitude to a
final state |f⟩ at t = t0 is:

c
(1)
f (t0) =

1

iℏ

∫ t0

0

Vfie
iωfit

′
dt′

=
Vfi

Ef − Ei

(
1− eiωfit0

)
=
Vfie

iωfit0/2

Ef − Ei
(−2i) sin

(
ωfit0
2

)
(2)
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The transition probability from |i⟩ at t = 0 to |f⟩ at t = t0 is:

Pf←i(t0) =
|Vfi|2

ℏ2
sin2

(
ωfit0
2

)
(
Ef−Ei

2ℏ

)2

This result is expected to be accurate as long as Pf←i(t0) ≪ 1. For large probabilities,
higher-order corrections must be considered.
The transition probability can also be expressed as:

Pf←i(t0) =
|Vfi|2

ℏ2
F (ωfi; t0) (3)

where F (ω; t) is defined as:

F (ω; t) =
sin2

(
ωt
2

)(
ω
2

)2
In the limit ω → 0, the function F (ω; t) behaves as:

lim
ω→0

F (ω; t) = t2

A plot of F (ω; t) as a function of ω for a fixed t shows a central lobe and smaller side
lobes. The width of the main lobe, denoted (∆ω)t, is defined as the distance between the
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two nearest zeroes and is given by:

(∆ω)t =
4π

t

Figure 2: Plot of F (ω; t) as a function of ω for a fixed t. The function features a central lobe
and smaller side lobes. As t grows, the width of the main lobe decreases as 1/t, while the
peak value at ω = 0 grows as t2.

The function F (ω; t) is suppressed for |ω| > (∆ω)t, meaning that transitions are most
likely within the main lobe.

33



To understand the main features of the transition probability, we examine its behavior for
different values of the final energy Ef .
If Ef ̸= Ei, the transition is termed energy nonconserving. This does not contradict
energy conservation, as the time-dependent perturbation effectively changes the energy.
The energy is supplied or absorbed by the source generating the term V . When V is
turned off, the state can be re-expressed as a superposition of Ĥ(0) eigenstates, allowing
a range of energy values.
If Ef = Ei, the transition is energy conserving. Both energy nonconserving and energy
conserving transitions are possible and are considered below.
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1. Ef ̸= Ei: The associated transition probability Pf←i(t0), given in (3), is shown below.
This probability is periodic in t0 with period 2π/ |ωfi|. The condition for the first-order
transition probability to remain accurate for all times t0 is:

4 |Vfi|2

(Ef − Ei)
2 ≪ 1

In this case, the amplitude remains small for all times. The amplitude decreases
as |Ef − Ei| increases, indicating that the larger the energy “violation,” the smaller
the transition probability. This occurs because a perturbation that turns on, remains
constant, and then turns off is not an efficient source of energy.

Figure 3: The transition probability Pf←i(t0) for constant perturbations, shown as a function
of time.
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2. Ef = Ei: The result for the transition probability in this case is obtained by taking
the ωfi → 0 limit of the probability expression. Using the limit condition for small
ω, we find:

Pf←i(t0)

∣∣∣∣
Ef=Ei

=
|Vfi|2

ℏ2
t20

The probability for energy-conserving transitions grows quadratically in time without
bound. However, this result is only valid for small t0 such that Pf←i(t0)≪ 1.

3. Note that quadratic growth of Pf←i is also observed in the energy nonconserving case
for small times t0. Using the earlier probability expression, we have:

lim
t0→0

Pf←i(t0) =
|Vfi|2

ℏ2
t20, Ef ̸= Ei

This behavior can be noted near the origin in the above figure. In this case, the
quadratic growth eventually transitions to oscillatory behavior.
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5 Harmonic Perturbations

Having studied the effect of constant perturbations, we now consider truly time-dependent
perturbations. A harmonic perturbation is one in which δH(t) is periodic in time with
some frequency ω. Such a perturbation can efficiently trigger transitions between discrete
energy levels separated by an energy approximately equal to ℏω.
The perturbation can cause a transition from the lower to the higher level, where the
system absorbs energy from the perturbation. It can also cause a transition from the
higher level to the lower level, where the system releases energy to the perturbation. In
the latter case, the system does not release the energy spontaneously; it is the perturbation
that stimulates the release of the energy.
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For harmonic perturbations, we write

Ĥ(t) = Ĥ(0) + δH(t),

where the perturbation δH(t) takes the form

δH(t) =

 0, for t ≤ 0

2H ′ cosωt, for t > 0

Here, by definition,
ω > 0,

and H ′ is some time-independent Hamiltonian. The inclusion of an extra factor of two
in the relation between δH and H ′ is convenient.
We consider transitions from an initial state |i⟩ with energy Ei to a final state |f⟩ with
energy Ef . The transition amplitude follows from

c
(1)
f (t0) =

1

iℏ

∫ t0

0

dt′eiωfit
′
δHfi(t

′).

Using the explicit form of δH(t), the integral can be evaluated:

c
(1)
f (t0) =

1

iℏ

∫ t0

0

eiωfit
′
2H ′fi cosωt

′dt′.
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Expanding the cosine, we have:

c
(1)
f (t0) =

H ′fi
iℏ

∫ t0

0

(
ei(ωfi+ω)t

′
+ ei(ωfi−ω)t

′
)
dt′.

Evaluating the integrals, we find:

c
(1)
f (t0) = −

H ′fi
ℏ

[
ei(ωfi+ω)t0 − 1

ωfi + ω
+
ei(ωfi−ω)t0 − 1

ωfi − ω

]
.

Comments:
1. The amplitude takes the form of a factor multiplying the sum of two terms, each

one a fraction. As t0 → 0, each fraction goes to it0. For finite t0, which is our
case of interest, each numerator is a complex number of bounded absolute value that
oscillates in time from zero up to two. In comparing the two terms, the relevant one
is the one with the smallest denominator. This is how we compare any two waves that
are superposed: the one with larger amplitude is more relevant, even though at some
special times-as it crosses the value of zero, for example-it is smaller than the other
wave.

2. The second term is relevant for ωfi ≃ ω-that is, when Ef ≃ Ei + ℏω. Since ω > 0,
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we have Ef > Ei. Energy is transferred from the perturbation to the system, and we
have a process of energy “absorption” in which the system moves to a higher-energy
state. This is shown on the left in the figure below.

3. The first term is relevant for ωf i ≃ −ω-that is, when Ef = Ei− ℏω. Since ω > 0, we
have Ei > Ef . Here, the system begins on the higher-energy state Ei, and we have a
process of stimulated emission in which the source has stimulated the system into a
transition that gives away energy ℏω. This is shown on the right in figure below.
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Figure 4: Left: Absorption process in which the source supplies the energy for the transition
from the lower-energy state |i⟩ into the higher-energy state |f⟩. Right: Stimulated emission
process in which the source stimulates the system to transition from the higher-energy state
|i⟩ into the lower-energy state |f⟩ while releasing energy.
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Both absorption and stimulated emission are of interest. Let us do the calculations for
the case of absorption; the answer for the case of stimulated emission will be completely
analogous. Since ωfi ≃ ω, the second term in the last line of the equation is much more
important than the first as long as

|ω − ωfi| ≪ |ωfi|

Keeping only the second term, we find that

c
(1)
f (t0) = −

H ′fi
ℏ
e
i
2(ωfi−ω)t0

ωfi − ω
2i sin

(
ωfi − ω

2
t0

)
,

and the transition probability is

Pf←i (ω; t0) =

∣∣H ′fi∣∣2
ℏ2

sin2
(
ωfi−ω

2 t0

)
(
ωfi−ω

2

)2

The transition probability depends on the frequency ω of the perturbation. Note that at
this point both Ei and Ef are held fixed. The transition probability is exactly the same
as that for constant perturbations with V replaced by H ′ and ωfi replaced by ωfi − ω. A
sketch of Pf−i(ω; t) as a function of ω is shown below.

42



Figure 5: The ω dependence of the transition probability Pf−i(ω; t) from a state |i⟩ of energy
Ei at t = 0 to a state |f⟩ of energyEf at time t, under a harmonic perturbation with frequency
ω. The probability peaks when ω = ωfi = (Ef − Ei) /ℏ.

Conditions on t0 for the above transition probability to be valid:
1. Consider the neglect of the first wave in the transition amplitude, the term peaking

for ωfi ≃ −ω. That wave, if included, would contribute to Pf−i (ω; t0) by itself and
through interference with the wave we kept. The width (∆ω)t of the main lobe should
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be small compared to the distance 2|ωfi| between the peaks:
4π

t0
≪ 2|ωfi|

Since ωfi ≃ ω, we see that
t0 ≫

1

|ωfi|
≃ 1

ω

This ensures t0 includes enough periods of the wave to identify the perturbation as
oscillatory.

2. Preventing Pf−i (ω; t0) from becoming too large: For resonance, ω = ωfi, the condi-
tion

Pf←i (ωfi; t0) =

∣∣H ′fi∣∣2
ℏ2

t20 ≪ 1

gives
t0 ≪

ℏ∣∣∣H ′fi∣∣∣
Combining the two conditions on t0:

1

|ωfi|
≪ t0 ≪

ℏ∣∣∣H ′fi∣∣∣
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For a suitable range of t0 to exist, the constraint

1

|ωfi|
≪ ℏ∣∣∣H ′fi∣∣∣ ⇒

∣∣H ′fi∣∣≪ ℏ|ωfi|

ensures that the matrix element of the perturbation remains much smaller than the Ĥ(0)

energy separating the two levels.
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6 Fermi’s Golden Rule

Consider transitions where the initial state of the system is discrete, but the final state
belongs to a continuum. A common example is the ionization of a hydrogen atom: the
initial state can be a bound state, while the final state involves a free electron, effectively
a momentum eigenstate in a continuum of nonnormalizable states. Such a spectrum is
depicted on the left side of the figure below.

Figure 6: Left: A spectrum with discrete states separate from a continuum. Right: A
spectrum in which discrete states are present at energies within the continuum.
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If the final state is in a continuum, the probability of transition from a discrete initial state
no longer exhibits periodic time dependence. Instead, an integral over final continuum
states is required, resulting in a transition probability that grows linearly in time. From
this, we can define a constant transition rate.
The transition rate to the continuum is given by Fermi’s golden rule. For both constant
and harmonic perturbations, we know the time-dependent transition probabilities from
an initial state with energy Ei to a final state with energy Ef . The next step is to learn
how to integrate these probabilities over the continuum of final states.
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Continuum States

To handle continuum states, we consider placing the system in a large cubic box of side
L with periodic boundary conditions. Although any boundary conditions would work,
periodic ones are simplest. Since physical effects should be insensitive to the distant
walls of a very large box, taking L→∞ removes any influence of the box.
In this approach, the originally continuous part of the spectrum becomes discrete, with
energy levels spaced very closely as L increases. For large L, the box has negligible
effect on the discrete part of the spectrum, but the continuum is now represented by a
dense set of states.
For large energies and short-range potentials, momentum eigenstates form a suitable
representation of the continuum. Introducing L as a regulator helps us handle infinite
quantities like the number of continuum states. At the end of the calculation, L will drop
out, ensuring consistency.
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Figure 7: A large cubic box of side L imposes boundary conditions that discretize the
continuum states. As L→∞, the states become densely packed.

Momentum eigenstates in the box are given by

ψ(x) =
1√
L3
eikxxeikyyeikzz,

with k = (kx, ky, kz). The normalization is correct since∫
box
|ψ(x)|2d3x =

1

L3

∫
box
d3x = 1.

Periodic boundary conditions impose

ψ(x + L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L) = ψ(x, y, z),
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which quantize the components of k:

kxL = 2πnx, kyL = 2πny, kzL = 2πnz.

From these relations, an increment d3k in momentum space corresponds to dnxdnydnz
in the discrete indices. It follows that

dnxdnydnz =

(
L

2π

)3

d3k.

The density of states in momentum space is uniform. Expressing d3k in spherical
coordinates,

d3k = k2dk dΩ,

where dΩ is the solid angle element.
The energy of a free particle is related to k by

E =
ℏ2k2

2m
=⇒ kdk =

m

ℏ2
dE.

Substituting this into d3k, we get

d3k = k
m

ℏ2
dE dΩ.
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Thus, the number of states in the energy interval dE and solid angle dΩ is

dN =

(
L

2π

)3

k
m

ℏ2
dΩ dE.

Define the density of states ρ(E) such that dN = ρ(E)dE. Then

ρ(E) =

(
L

2π

)3
m

ℏ2
kdΩ.

For large L, a sum over continuum states can be converted into an integral using this
density: ∑

states
→

∫
ρ(E)dE.

With this formalism, we are ready to integrate over final continuum states when calcu-
lating transition amplitudes. We consider the case of constant perturbations, where this
approach will be applied.
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Constant perturbations

Recall that the Hamiltonian is Ĥ(t) = Ĥ(0) + V , with V a constant perturbation. We
consider transitions from an initial discrete state |i⟩ with energy Ei into any state |f⟩ in
the continuum. The transition probability Pf←i(t0) for a single final state f was obtained
previously.
To find the total probability of transitioning into the continuum, we sum over all final
continuum states:∑

f

Pf←i(t0) =

∫
Pf←i(t0)ρ(Ef) dEf =

∫
|Vfi|2

ℏ2
ρ(Ef)F (ωfi; t0) dEf (4)

The function F (ωfi; t0) is large only for ωfi near zero, corresponding to Ef near Ei.
Thus, the integral is dominated by energies close to Ei. Define

K(Ef) ≡ |Vfi|2ρ(Ef) (5)
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Figure 8: Two plots in one, both functions of the energy Ef . The function F (ωfi; t0) has
a main lobe centered at Ei of width (∆E)t0. The other function is the product K (EF ) =

|Vfi|2 ρ (Ef). We indicate the width ∆E(K) over which K changes appreciably.
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If K(Ef) varies slowly with Ef , we approximate it as nearly constant over the narrow
energy range that contributes. Evaluating it at Ef = Ei and taking it out of the integral:∑

f

Pf←i(t0) ≃
|Vfi|2

ℏ2
ρ(Ef = Ei)I(t0) (6)

Consider
I(t0) ≡

∫
F (ωfi; t0) dEf (7)

Since dEf = ℏdωfi, we have

I(t0) = ℏ
∫
F (ωfi; t0) dωfi (8)

The function F (ωfi; t0) =
sin2(ωfit0/2)

(ωfi/2)
2 is peaked around ωfi = 0. Extending the integral

to infinity:

I(t0) = ℏ
∫ ∞

−∞

sin2(ωfit0/2)

(ωfi/2)2
dωfi (9)

Change variables u = ωfit0/2:

I(t0) = 2ℏt0
∫ ∞

−∞

sin2 u

u2
du (10)
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The integral of sin2 u/u2 from −∞ to∞ is π, giving:

I(t0) = 2πℏt0 (11)

Substituting I(t0) back:∑
f

Pf←i(t) ≃
|Vfi|2

ℏ2
ρ(Ef = Ei)2πℏt =

2π

ℏ
|Vfi|2ρ(Ef = Ei)t (12)

For sufficiently large t, the transition probability grows linearly in time. Defining a
transition rate w:

w ≡ 1

t

∑
f

Pf←i(t) (13)

Thus:
w =

2π

ℏ
|Vfi|2ρ(Ef = Ei) (14)

This is Fermi’s golden rule for constant perturbations.
Note that |Vfi|2 ∼ L−3, while ρ(E) ∼ L3, so the dependence on the size L of the box
cancels out, ensuring a finite, well-defined rate.
In terms of K(E):

w =
2π

ℏ
K(Ei) (15)
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