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1 Time-Dependent Hamiltonians

Time-dependent Hamiltonians are essential for studying various physical processes, such
as spins in time-dependent magnetic fields and atoms subject to electromagnetic radiation.
The Schrodinger equation with time-dependent Hamiltonians is generally harder to solve

than its time-independent counterpart.

. Time Evolution and the Unitary Operator: For time-dependent Hamiltonians H (),
solutions are often written in terms of a unitary operator I/ (¢) that evolves any physical
state over time. However, there is no simple expression for I/(¢); it can only be expressed

as a formal power series involving nested integrals of time-ordered products of the

Hamiltonian H (¢).



. Energy Eigenstates and Time Dependence: A time-dependent //(t) does not have
energy eigenstates. The existence of energy eigenstates relies on factorization of solutions
U(x, t) into a space-dependent part ¢)(x) and a time-dependent part, e~*¥/" with E being
the energy. This factorization is only possible for time-independent Hamiltonians. For a
time-independent H:

A

Hy(x) = Ey(x)
and
U(x,t) = p(x)e E/P

solves the full Schrodinger equation:

iho = H.



» Instantaneous Eigenstates: For time-dependent Hamiltonians, one might consider in-

stantaneous eigenstates (X, t), satisfying:

H(t)y(x,t) = E(t)y(x, t),
for each value of ¢t. These states, however, are not solutions to the time-dependent
Schrodinger equation:

ih9,U(x,t) = H(t)V(x,1).

» Perturbative Approach: We study time-dependent Hamiltonians using perturbation

theory, assuming the time dependence arises as a perturbation:

A

H(t)=HY +6H (1),

where H¥) is time-independent and has a well-defined spectrum, while § H (t) introduces

time dependence.



» Time Evolution: The goal is to solve the time-dependent Schrodinger equation (suppress

the labels associated with space and other d.o.f.):
%) A
b U(E)) = (H<0> + 5H(t)) (t).

- Perturbation Timeline: In many scenarios, d H(t¢) is nonzero only within a finite time

interval, as illustrated:

!}[Hi H"H]} + OH(1) 1}“”

L |

I | .'!'
I I

» Eigenstate Basis: For ¢t < t;, the system is in an eigenstate or a linear combination of
eigenstates of HO. After the perturbation vanishes (¢ > t), the system can be described
similarly. During the perturbation, eigenstates of HO provide a complete basis for

expressing the time-dependent state.
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» Physical Questions: Time-dependent perturbation theory helps answer questions about
transitions between eigenstates. For instance, consider a hydrogen atom initially in
its ground state. An electromagnetic field is applied for a finite time interval. Time-

dependent perturbation theory can determine the probabilities of finding the atom in

various excited states after the perturbation ends.



2 The Interaction Picture

In order to solve efficiently for the state |\W(¢)), we introduce the interaction picture of
quantum mechanics. This picture combines elements of the Heisenberg and Schrodinger
pictures. We use the known Hamiltonian HO to define Heisenberg operators, and the

perturbation 0 H to write a Schrodinger equation.

» Time Evolution in the Heisenberg Picture: For any Hamiltonian, the unitary operator

U(t) generates time evolution:
[W(t)) = U(t)[¥(0)).

The Heisenberg operator A corresponding to a Schrodinger operator Ag is defined

through expectation values:
(W(8)|As|W(1)) = (L)1 (t) At ()| W(0)) = (W(0)| An|T(0)),

where:
Ag =UT(H)AU(®R).
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. Unitary Operator Properties: The operator /! “brings states to rest”:
U (L)) = [9(0)).
For the time-independent Hamiltonian HO the unitary time evolution operator is:
Up(t) = o~ HOt/h
» Auxiliary State Definition: To simplify the evolution problem, define the auxiliary state:
(1)) = (D)), (1)

This auxiliary state removes the time dependence generated by HO. If §H = 0, then

[W(¢)) is constant. The original state can be recovered:
_ _—iHOy/R7,
W) =e W (#))-
» Initial Condition: At ¢ = 0, the auxiliary state agrees with the original state:

[U(0)) = [(0)).
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» Schrodinger Equation in the Interaction Picture: Differentiating the auxiliary state

equation (1) and using the Schrodinger equation for |W(t)):

m%@<w>=—ﬁ<0>\iff<t>>+ Ve (A0 1 5H(D)) (WD)

S (O t/h( O 4 §H(t )) -t t/ﬂ T(1)
_ eiﬁ(o)t/héH(t)e—if[(o)t/h|{f}(t»7

where terms involving HO cancel. Thus:

Sdiea e
ih— V(1)) = SH()[V(¢)),

where:
SH(t) = M s H ()~ TN,

. Interpretation of § H (t): The operator oH (t) is the Heisenberg version of ¢ H (t) with
respect to H(®). It generates the time evolution of |U(¢)), which is described by a
Schrodinger equation.

» Exact Analysis: The interaction picture allows us to simplify the Schrodinger equation
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under time-dependent perturbations. If 6 H () = 0, |¥(¢)) remains time-independent, as

it equals [W(0)).



Example: Nuclear Magnetic Resonance with rotating magnetic field

» The Hamiltonian for a particle with a magnetic moment inside a magnetic field is:
H=w-S

where S is the spin operator, and w 1s the Larmor angular velocity, a function of the
magnetic field.

» The unperturbed Hamiltonian is:

. h
H(O) = WOSz = 5(,0()0'2

which corresponds to a magnetic field in the z-direction. In NMR applications, longitu-
dinal magnetic fields are of the order of a tesla, and Larmor frequencies wy ~ 100 MHz
are common.

» To this unperturbed Hamiltonian, we add the effect of a magnetic field in the (x, y)-plane,
rotating with the Larmor frequency wy:

OH(t) = (5} cos wot + Sy sin w0t>
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where () is another frequency determined by the strength of the rotating magnetic field.
This is a specific case of the general NMR problem, where the system is at resonance.

» In the interaction picture, the perturbation § H(¢) is defined as:

(ﬂ{](t) = exp [iwot%} Q (S’x cos wot + ﬁy sin wot) exp [—iwot%]

» The right-hand side has zero time derivative, and thus (Exercise):
SH(t) = QS,
. Since 6H (t) is time-independent, the Schrodinger equation for [U(¢)) is:

F(8)) = exp [—5—;“

Ox

2

B(0) = exp | —i6% 2] [(0))

» The complete solution for the state evolution is:

[U(t)) = exp [—iﬁ;)t] T(t)) = exp [—iwot%] exp [—iﬂt%] (0))

» The spin, aligned along 2 at ¢t = 0, will move toward the x, y-plane with angular velocity

(2 while simultaneously rotating around the z-axis with angular velocity wy.
13
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Interaction picture as seen in a basis

» Consider an orthonormal basis |n) for the Hamiltonian HO:
HO\n) = Eyln)

where the states |n) and their energies F, remain unperturbed.
» Ansatz: The interaction-picture state can be written as:

W) =Y calt)ln)

n

where the ¢, (t) are time-dependent coefficients.

» The original wavefunction in terms of the interaction picture is:

(1) = e M) = D eult)e ™ |n)

n

» Substituting the ansatz into the interaction picture Schrodinger equation gives:

m% > " cn(t)lm) = SH(t) D calt)|n)
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» Resolving the identity on the right-hand side:

Y Sihém(t)lm) = > G Hpn(t)cn(t)|m)

m

where the matrix elements are defined as:
SH uu(t) = (m|SH (t)|n)
- Equating coefficients of |m), the evolution equations for the coefficients are:

ihém(t) =Y O Hpn(t)cu(t)

. The matrix elements 0 mn(t) in terms of the original variables are:
OH o (t) = 5= 5™ m| S H (¢)|m)

» Defining the frequency difference:

Wmn =

k., — E,
h

we write:

SH (1) = €5 H,,.. (1)
16



» The coupled differential equations for c,,(t) are:

ihen(t) =Y " §Hyp (t)cn(t)

n

» Once the coefficients ¢,,(t) are determined, the state is given by:

W) =D cult)e " n)

n

» These equations are exact and hold for arbitrary J H (¢), whether small or large.



Example: Transitions in a two-state system

. Consider a two-state system with basis states |1) and |2), which are eigenstates of H(¥)

with energies F and FE», respectively. The off-diagonal perturbation 0 H (t) is defined as:

0 f(#)

0H(t) =
v frt) 0

where f(t) is only nonzero for — 7" < ¢ < T and vanishes fort < —T and ¢ > T.

» An example of the function f(¢) is shown in the figure below:

A

1)

/\/\

| |
-T \_/ T t

Figure 1: A function f(¢) that vanishes for ¢t > |T|.

v
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» If the system is in |1) at £ = —oo, the state evolves as:
W(t)) = e B1/71), for —oo <t < —T
o If the state att = 7' 1s
[U(T)) = nll) +[2)
with ; and v, constants, then the state for any time ¢ > 7" will be
[U(8)) = m|L)e BT 4 ap| 2y~ E2l=T)/R
and the probability of finding the system in |2) is:
pa(t) = [T (@)]* = |l

which is time-independent for ¢ > 7',

» The state during the perturbation interval is written as:
[U(t) = ca(t)e™ P1HL) + ent)e ™ H2/2)

with initial conditions:

Cl(—T> = 1 CQ(—T) =0
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» The coupled differential equations for the coeflicients are:

’thl (t) = 6”12755[‘]12@)62(15)
ZhCQ(t) = eiW21t5H21(t)cl(t)

where w1y = —wq; = (B — FE5)/h. The couplings are off-diagonal because  H1; =

0 Hyy = 0. Using the form of the 0 H matrix elements, we find that
iher(t) = ™2 f(t)cy(t)

ihea(t) = e ™2 f*(t) ey (t)

» These equations, along with the initial conditions, determine the solution for ¢ > —T'.
Numerical or perturbative methods may be used to solve them.

» Once the solution is obtained, the probability of finding the state in |2) at t = oo is:

pa(00) = |ea(T)°

20



3 Perturbative Solution in the Interaction Picture

» To develop a perturbative solution to the interaction picture Schrodinger equation:
d - R
th— [U(t)) = 0H(t)|¥(2))

o Introduce a small parameter A to systematically expand the perturbation in the time-

dependent Hamiltonian:

A

H(t)=HY + \H(1)

» The interaction picture Schrodinger equation becomes:
d ~ —~
zhal\lf(t» = NOH ()| V()

. Expand the state |U(¢)) in powers of \:

~

T(t)) = |\IJ(O)(t)> + A ‘®<l>(t)> + )2 (Ej<2>(t)> +0 (2
» Insert the expansion into the Schrodinger equation. Equating terms of like powers of A,

21



we get:

iho, |UO(¢)

)
iho, Ef<1>(t)> Y ‘@<0>(t)> |
)5

G040 ()) = H [T0)(1))

» The origin of this pattern lies in the explicit A multiplying the right-hand side of the

iho, [P (¢)

(; h@t

Schrodinger equation. Thus, the time derivative of the nth-order ket is coupled to the
perturbation SH acting on the (n — 1)th-order ket.
. |WU(t)) and |T(t)) agree at t = 0:

(0)) = |9(0)) = |

~

\11<0>(0)> + A ‘@<l>(0)> + )2 ‘@<2>(0)> + OO
» Matching terms for all powers of \ gives:

ﬁ@m» W(0) |@ >:Q n>1
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» Solving the first equation in the perturbation series:

T ) = [E00)) = 9 (0)

» For the O(\) term:

» Its solution is:

. For the O()\?) term:

» The solution becomes:

)= [

» Substituting ‘\Al}(l)(t’ )>, the nested integral form is:

~ PSH(Y) " SH(")

U@ ) = / dt’ / U(0)) dt”

T (0)) St | 1o
23
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» The complete solution is:
() = e B (Ju(0)) + ‘qj )+ ‘@(2)(t)> o)
» Transition probability P,,. ,(¢) from |n) to |m) with m # n:
Prrn(t) = [(m|¥(2))]°
» Using the perturbative expansion:
Pren(t) = |<my (1w(0)) + ‘qf (1)) + ‘\Tf<2>(t)> o) |2

» For m = n, and keeping only the first-order term:

| [HmPHE) )
_/0 ih d

m<n — ‘

» Recalling the relation between matrix elements of SH and 6 H:

b S H (Y
/ ezwmnt ( )dt/
0

%

7 , M7

» This is the key result for transition probabilities to first order in perturbation theory.
24




Perturbative solution in a basis

» To describe the state evolution, we use the expansion:

[U(t) =D enlt)n)

n

» The initial condition reads:

U(0)) = > eal0)ln) = [0 )

n

» Writing each order term:

)\Tf(k)(t)> =N @)y, k=0,1,2,...

n

» The perturbative expansion of the state:

~

(L)) = |\IJ(O)(t)> +A ‘@<l>(t)> L (i17<2>(t)> + 0 (X)
» Coeflicients for the expansion:

enlt) = () + AcD(#) + AP () + - -

25



- Since ‘\TJ(O) (t)> is constant:

» We conclude:

» The expansion simplifies:
cn(t) = cn(0) + AV (E) + A2cD(2) + - -

» For n > 1, initial conditions give:

» Using the solution for |\IJ >

|fff(1 > ch )n) = /

n

——

(') .
-t zn:cn(())\m
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» Projecting onto (m/, we find:

) (f) = EE:./g <Tnl5fzét9 hz>cn<0)dt,

» Expressing in terms of 0 H:

1 Z/ dtlezwmnt 6Hmn( )Cn<0)

- The probability of being in state |m) at time ¢:

Po(t) = [{m | W(@)]* = [(m | W(©)* = |en(t)]”

» Using the expansion of ¢,,(t):



° If Cm(O) = O:

Pult) = || +0 ((67°)

- This is equivalent to earlier results when |n) is the initial state.



NMR at resonance in perturbation theory

» Consider the case of NMR at resonance, where the rotating magnetic field is treated as a
perturbation. The spin-state evolution is obtained to first order in the perturbation.

. In the previous example, we determined the exact solution for the state |U(¢)), given by:
T (2)) = exp [—%ngt] [T(0)) = exp [—iQt%] (0))
» To check consistency with first-order perturbation theory, we use:

F0e) - | | ﬁfﬁ” 0(0))d

. Substituting 6 H (t) = 15,, we compute:
‘\Tf(l)(t)> — —%Qté}\\lf(@)} — —mt%xp(o»

» This result corresponds to the first nontrivial term in the Taylor expansion of the exact

solution:

(1)) = exp | -2 | [9(0))



» The first-order result 1s an accurate description of the system for short times, where

()t < 1. However, for arbitrarily long times, this approximation becomes less reliable.
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4 Constant Perturbations

» Consider a constant perturbation, where the Hamiltonian is time-independent, but we use

time-dependent perturbation theory for analysis. The perturbed Hamiltonian is given by:
H=HO9 Vv

» Assuming the initial state at ¢ = 0 is an eigenstate of HO), the effect of the perturbation
V' at a later time ¢, can be studied using first-order time-dependent perturbation theory.

The transition amplitude to first order is:

t
C%) (t) — ZA dtleiammt/%cn(())

- Representing the initial state |¢) at ¢ = 0, with ¢,(0) = 4, ;, the transition amplitude to a

final state | f) at t = ¢ is:
10
(1) 1 iweit’ 341
ty) = — Vz fi* dt
Pt =75 | Ve

Vi ‘ Vz iwfit0/2 Zt
- gl (e = o () o




» The transition probability from |i) at¢ = 0 to |f) at t = ¢, is:

V[P si0° (wgto)
Pf%i(to)z h? Ey—Ei :
(%)

» This result is expected to be accurate as long as Pr.;(ty) < 1. For large probabilities,

higher-order corrections must be considered.

» The transition probability can also be expressed as:

Vil
Prei(to) = —5F(wpisto) (3)
where F'(w;t) is defined as:
2 (wt
Pty = S ()

o\ 2

(%)

» In the limit w — 0, the function F'(w;t) behaves as:
lim F(w;t) = t*
w—0

» A plot of F(w;t) as a function of w for a fixed ¢ shows a central lobe and smaller side

lobes. The width of the main lobe, denoted (Aw);, is defined as the distance between the
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two nearest zeroes and is given by:

_4n _2m
! t

Cv

Figure 2: Plot of F'(w;t) as a function of w for a fixed ¢. The function features a central lobe
and smaller side lobes. As ¢ grows, the width of the main lobe decreases as 1/¢, while the

peak value at w = 0 grows as t°.

» The function F'(w;t) is suppressed for |w| > (Aw);, meaning that transitions are most

likely within the main lobe.
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» To understand the main features of the transition probability, we examine its behavior for
different values of the final energy E.

. If By # L, the transition is termed energy nonconserving. This does not contradict
energy conservation, as the time-dependent perturbation effectively changes the energy.
The energy is supplied or absorbed by the source generating the term V. When V is
turned off, the state can be re-expressed as a superposition of HO eigenstates, allowing
a range of energy values.

. If £y = E;, the transition 1s energy conserving. Both energy nonconserving and energy

conserving transitions are possible and are considered below.



1. E; # E;: The associated transition probability Pr. (%), given in (3), is shown below.
This probability is periodic in ¢, with period 27/ |w;|. The condition for the first-order
transition probability to remain accurate for all times ¢ is:

4|Vl
(Ey — E3)

In this case, the amplitude remains small for all times. The amplitude decreases
as |Ey — E;| increases, indicating that the larger the energy “violation,” the smaller
the transition probability. This occurs because a perturbation that turns on, remains

constant, and then turns off is not an efficient source of energy.
P/«—,‘(’())

AVP
(E/—E;)?

27 ‘o
“U_/'i|

Figure 3: The transition probability Py, () for constant perturbations, shown as a function

of time.
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2. By = E;: The result for the transition probability in this case is obtained by taking
the wy; — 0 limit of the probability expression. Using the limit condition for small

w, we find:

Pfki (t()) - K2 t%
Er=E;

The probability for energy-conserving transitions grows quadratically in time without
bound. However, this result is only valid for small ¢, such that Py, ;(t)) < 1.

3. Note that quadratic growth of P;.; is also observed in the energy nonconserving case
for small times ?(. Using the earlier probability expression, we have:

| f@|
tlolin() Pf<—z(t()) 72 t()? Ef #+ E;

This behavior can be noted near the origin in the above figure. In this case, the

quadratic growth eventually transitions to oscillatory behavior.



5 Harmonic Perturbations

» Having studied the effect of constant perturbations, we now consider truly time-dependent
perturbations. A harmonic perturbation is one in which § H(¢) is periodic in time with
some frequency w. Such a perturbation can efficiently trigger transitions between discrete
energy levels separated by an energy approximately equal to Aw.

» The perturbation can cause a transition from the lower to the higher level, where the
system absorbs energy from the perturbation. It can also cause a transition from the
higher level to the lower level, where the system releases energy to the perturbation. In
the latter case, the system does not release the energy spontaneously; it is the perturbation

that stimulates the release of the energy.
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» For harmonic perturbations, we write
H(t)=HY +§H (1),
where the perturbation 6 H () takes the form

0, fort <0

0H(t) =
2H' coswt, fort >0
» Here, by definition,

w > 0,

and H' is some time-independent Hamiltonian. The inclusion of an extra factor of two
in the relation between § H and H' is convenient.
» We consider transitions from an initial state |;) with energy F; to a final state |f) with

energy F/;. The transition amplitude follows from

Dty = L [ gpeirt sE(¢
cp ) =7p | are Filt).
» Using the explicit form of § H (¢), the integral can be evaluated:

(1) L P -
¢, (to) = = 1" 2H Yy coswt'dt’.
0
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» Expanding the cosine, we have:

Lo [t
C;l)(to) — fZ/ <€i(Wfi+w)t/_|_€i(chi—w)t/) dt/
0

1h
» Evaluating the integrals, we find:
llwritwito _ 1 gilwri—w)to _

/i 1
W(te) =~ [ ¥ ]

W +w Wi — W

» Comments:

1. The amplitude takes the form of a factor multiplying the sum of two terms, each
one a fraction. As t; — 0, each fraction goes to ity. For finite ¢y, which is our
case of interest, each numerator is a complex number of bounded absolute value that
oscillates in time from zero up to two. In comparing the two terms, the relevant one
is the one with the smallest denominator. This is how we compare any two waves that
are superposed: the one with larger amplitude is more relevant, even though at some
special times-as it crosses the value of zero, for example-it is smaller than the other
wave.

2. The second term is relevant for wy; ~ w-that is, when £y ~ E; + hw. Since w > 0,

39



we have Iy > FE;. Energy is transferred from the perturbation to the system, and we
have a process of energy “absorption” in which the system moves to a higher-energy
state. This is shown on the left in the figure below.

. The first term is relevant for ws; ~ —w-that is, when F; = E; — hw. Since w > 0, we
have I; > Ey. Here, the system begins on the higher-energy state £;, and we have a
process of stimulated emission in which the source has stimulated the system into a

transition that gives away energy hw. This is shown on the right in figure below.
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Ly ) £ i)

E; ) £y /)

W~ oy W~ — g

E;=E;+hw E,~E;—hw
Figure 4: Left: Absorption process in which the source supplies the energy for the transition
from the lower-energy state |7) into the higher-energy state | f). Right: Stimulated emission

process in which the source stimulates the system to transition from the higher-energy state

|4) into the lower-energy state | f) while releasing energy.
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» Both absorption and stimulated emission are of interest. Let us do the calculations for
the case of absorption; the answer for the case of stimulated emission will be completely
analogous. Since wy; ~ w, the second term in the last line of the equation is much more

important than the first as long as
w —wril < Jwyil

Keeping only the second term, we find that

/ 1(@1 i—w)tg
(1) fiezs L fwp—w
c,’ (tg) = — 218 t

/ ( O) h We —w = ( 2 0) ,

and the transition probability is
Lt ()

h? (wﬂ )2
2

» The transition probability depends on the frequency w of the perturbation. Note that at

this point both £; and E are held fixed. The transition probability is exactly the same
as that for constant perturbations with V' replaced by H' and w; replaced by wy; — w. A

sketch of Py_;(w;t) as a function of w is shown below.
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ot
Figure 5: The w dependence of the transition probability Ps_;(w; t) from a state |i) of energy

E;att = Otoastate | f) of energy E at time ¢, under a harmonic perturbation with frequency

w. The probability peaks when w = wy; = (Ef — E;) /h.

» Conditions on % for the above transition probability to be valid:
1. Consider the neglect of the first wave in the transition amplitude, the term peaking
for wy; >~ —w. That wave, if included, would contribute to Py_; (w; ) by itself and

through interference with the wave we kept. The width (Aw); of the main lobe should
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be small compared to the distance 2|w ;| between the peaks:
Am
to

Since wy; ~ w, we see that
1

Yy

tg > ~
wril - w

This ensures t, includes enough periods of the wave to identify the perturbation as
oscillatory.

2. Preventing Py_; (w; tp) from becoming too large: For resonance, w = wy;, the condi-

tion ,
R 1 Y
Pri (wfl, to) = iy < 1
gives
h
o < +—
H'.

» Combining the two conditions on ¢y:




For a suitable range of ¢ to exist, the constraint
1 h
— K — = |H}| < Alwyil
wyil ‘H}z

ensures that the matrix element of the perturbation remains much smaller than the HO

energy separating the two levels.
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6 Fermi’s Golden Rule

» Consider transitions where the initial state of the system is discrete, but the final state
belongs to a continuum. A common example is the ionization of a hydrogen atom: the
initial state can be a bound state, while the final state involves a free electron, effectively
a momentum eigenstate in a continuum of nonnormalizable states. Such a spectrum is

depicted on the left side of the figure below.

A A

E E

Figure 6: Left: A spectrum with discrete states separate from a continuum. Right: A

spectrum in which discrete states are present at energies within the continuum.
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» If the final state is in a continuum, the probability of transition from a discrete initial state
no longer exhibits periodic time dependence. Instead, an integral over final continuum
states is required, resulting in a transition probability that grows linearly in time. From
this, we can define a constant transition rate.

» The transition rate to the continuum is given by Fermi’s golden rule. For both constant
and harmonic perturbations, we know the time-dependent transition probabilities from
an initial state with energy E; to a final state with energy £;. The next step is to learn

how to integrate these probabilities over the continuum of final states.
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Continuum States

» To handle continuum states, we consider placing the system in a large cubic box of side
L with periodic boundary conditions. Although any boundary conditions would work,
periodic ones are simplest. Since physical effects should be insensitive to the distant
walls of a very large box, taking . — oo removes any influence of the box.

» In this approach, the originally continuous part of the spectrum becomes discrete, with
energy levels spaced very closely as L increases. For large L, the box has negligible
effect on the discrete part of the spectrum, but the continuum is now represented by a
dense set of states.

» For large energies and short-range potentials, momentum eigenstates form a suitable
representation of the continuum. Introducing L as a regulator helps us handle infinite
quantities like the number of continuum states. At the end of the calculation, L will drop

out, ensuring consistency.
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L

Figure 7: A large cubic box of side L imposes boundary conditions that discretize the

continuum states. As L. — oo, the states become densely packed.

» Momentum eigenstates in the box are given by

1
P(x) = 7

with k = (k,, k,, k.). The normalization is correct since

1
2 13 3
X = — = ],
/bOXW( d’x 3/boxdx

» Periodic boundary conditions impose

ezkxxezkyyezkz,27

Y+ Ly, z) =y, y+ L,z) =¥(x,y, 2+ L) = (2,9, 2),
49



which quantize the components of k:
kL = 2mng, kL =2mn,, k,L=_2mn,.

. From these relations, an increment d°k in momentum space corresponds to dn,dn,dn,

in the discrete indices. It follows that

I 3
dndn,dn, = (2—) d’k.

7

. The density of states in momentum space is uniform. Expressing d°k in spherical

coordinates,
Pk = k2dk dS,

where df? is the solid angle element.
» The energy of a free particle is related to £ by
R2k? m
EF=— — kdk = =dF.
2m h?
. Substituting this into d°k, we get
3, M
d’k = kﬁdE ds).
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» Thus, the number of states in the energy interval d £ and solid angle df? is

an — (L SkmdeE
-\ 2r h? '

» Define the density of states p(E) such that dN = p(E)dE. Then

(B) = (£ ™o
PAEI=\on) B '

» For large L, a sum over continuum states can be converted into an integral using this

> = / p(E)dE.

states

density:

» With this formalism, we are ready to integrate over final continuum states when calcu-
lating transition amplitudes. We consider the case of constant perturbations, where this

approach will be applied.
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Constant perturbations

. Recall that the Hamiltonian is £ (t) = H®O 1+ V. with V a constant perturbation. We
consider transitions from an initial discrete state |i) with energy F; into any state | f) in
the continuum. The transition probability Py, () for a single final state f was obtained
previously.

» To find the total probability of transitioning into the continuum, we sum over all final

continuum states:

Vi |2
> Proi(to) = / P i(to)p(Ey) dEy = | 7“;’ p(Er)F(wyisto) dEy 4)
f

» The function F'(wy;;to) is large only for wy; near zero, corresponding to E; near E;.

Thus, the integral is dominated by energies close to ;. Define

K(Ey) = Vil p(Ey) (5)



Figure 8: Two plots in one, both functions of the energy E;. The function F' (wy;; to) has
a main lobe centered at E; of width (AE),,. The other function is the product K (Er) =
Vii|” p (Ey). We indicate the width Az (K) over which K changes appreciably.
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If K(Ey) varies slowly with E;, we approximate it as nearly constant over the narrow

energy range that contributes. Evaluating it at £y = E; and taking it out of the integral:

> Prei(to) =~ H;%Z‘QP(Ef = Ei)I(t) (6)
f
» Consider
I(ty) = /F(wﬁ; to) dE; (7)
Since dE/y = hdwy;, we have
I(ty) = h/F(wﬁ;to) dwy; (8)

sin? (wpito/2)
(wri/2)?

- e sin2(wfit0/2) .
I(t)) =h /_ 2y dw s 9)

» The function F'(wy;;ty) = is peaked around wy; = 0. Extending the integral

to infinity:

Change variables u = wy;t(/2:

® sin?

2

—00
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The integral of sin® u/u? from —oo to oo is 7, giving:
[(to) =S 27Tht0 (11)

» Substituting (t,) back:

Vi
ZPfH —’ f’ p(Er = E;)2rht = _7T|sz'|2p(Ef:Ei)t (12)

For sufﬁciently large t, the transition probability grows linearly in time. Defining a

transition rate w:
1

» Thus:
w="Vylo(E; = E) (14)
This is Fermi’s golden rule for constant perturbations.
- Note that |Vy;|* ~ L™3, while p(F) ~ L?, so the dependence on the size L of the box
cancels out, ensuring a finite, well-defined rate.
» In terms of K (E):
= —K(E) (15)
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