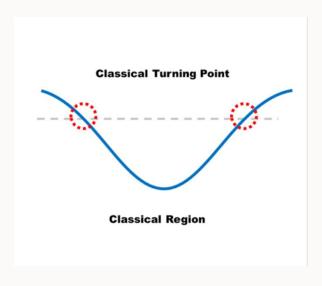
WKB and Semiclassical Approximation Quantum Mechanics II

Ding-Yu Shao Fudan University



Contents

1	The classical limit	3
2	WKB approximation scheme	8
3	Using Connection Formulae	23
4	Connection formulae	29

1 The classical limit

Our discussion in this section will focus on one-dimensional problems. Consider a particle of mass m and total energy E moving in a potential V(x). In classical physics, E-V(x) is the kinetic energy of the particle at x. This kinetic energy depends on position.

Definitions and Key Equations

• Kinetic energy: $\frac{p^2}{2m}$, define local momentum p(x):

$$p^2(x) \equiv 2m[E - V(x)]. \tag{1}$$

• Local de Broglie wavelength $\lambda(x)$:

$$\lambda(x) \equiv \frac{h}{p(x)} = \frac{2\pi\hbar}{p(x)}.$$
 (2)

• Time-independent Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} = [E - V(x)]\psi(x). \tag{3}$$

• In terms of local momentum:

$$-\hbar^2 \frac{\partial^2 \psi}{\partial x^2} = p^2(x)\psi(x). \tag{4}$$

• Using momentum operator:

$$\hat{p}^2\psi(x) = p^2(x)\psi(x). \tag{5}$$

This is not an eigenvalue equation. The momentum operator acts on the wavefunction weighted by the classical, position-dependent local momentum-squared.

Classically Allowed and Forbidden Regions

A bit of extra notation is useful. If we are in the classically allowed region, where E > V(x) and $p^2(x)$ is positive, we write:

$$p^{2}(x) = 2m[E - V(x)] = \hbar^{2}k^{2}(x).$$
(6)

introducing the local, real wavenumber k(x).

If we are in the classically forbidden region, where V(x)>E and $p^2(x)$ is negative, we write:

$$-p^{2}(x) = 2m[V(x) - E] = \hbar^{2}\kappa^{2}(x). \tag{7}$$

introducing the local, real $\kappa(x)$.

Wavefunctions in the WKB Approximation (3D)

The wavefunction in the WKB approximation is often written in polar form:

$$\Psi(\mathbf{x},t) = \sqrt{\rho(\mathbf{x},t)} \exp\left(\frac{i}{\hbar} \mathcal{S}(\mathbf{x},t)\right)$$
(8)

where $\rho(\mathbf{x}, t)$ and $\mathcal{S}(\mathbf{x}, t)$ are real, with ρ representing the probability density:

$$\rho(\mathbf{x},t) = |\Psi(\mathbf{x},t)|^2. \tag{9}$$

Let's compute the probability current. For this we begin by taking the gradient of the wavefunction

$$\nabla \Psi = \frac{1}{2} \frac{\nabla \rho}{\sqrt{\rho}} e^{\frac{iS}{\hbar}} + \frac{i}{\hbar} \nabla S \Psi \tag{10}$$

We then form:

$$\Psi^* \nabla \Psi = \frac{1}{2} \nabla \rho + \frac{i}{\hbar} \rho \nabla \mathcal{S} \tag{11}$$

The current is given by

$$\mathbf{J} = \frac{\hbar}{m} \operatorname{Im} \left(\Psi^* \nabla \Psi \right). \tag{12}$$

It follows that

$$\mathbf{J} = \rho \frac{\nabla \mathcal{S}}{m}.\tag{13}$$

In classical physics a fluid with density $\rho(\mathbf{x})$ moving with velocity $\mathbf{v}(\mathbf{x})$ has a current density $\rho\mathbf{v}=\rho\frac{\mathbf{p}}{m}$. Comparing with the above expression for the quantum probability current, we deduce that

$$\mathbf{p}(\mathbf{x}) \simeq \nabla \mathcal{S} \tag{14}$$

2 WKB approximation scheme

To find approximate solutions for the wavefunction $\psi(x)$ in the time-independent Schrodinger equation, we represent $\psi(x)$ using a single complex function S(x) as:

$$\psi(x) = \exp\left(\frac{i}{\hbar}S(x)\right), \quad S(x) \in \mathbb{C}.$$

Here, S(x) has units of \hbar . The real part of S, divided by \hbar , gives the phase, and the imaginary part determines the magnitude of the wavefunction. Substituting into the Schrödinger equation:

$$-\hbar^2 \frac{d^2}{dx^2} \left(e^{\frac{i}{\hbar}S(x)} \right) = p^2(x) e^{\frac{i}{\hbar}S(x)},$$

and expanding the derivatives, we get:

$$-\hbar^2 \frac{d^2}{dx^2} \left(e^{\frac{i}{\hbar}S(x)} \right) = -\hbar^2 \left(\frac{iS''}{\hbar} - \frac{(S')^2}{\hbar^2} \right) e^{\frac{i}{\hbar}S(x)}.$$

Simplifying and canceling the common exponential:

$$(S'(x))^2 - i\hbar S''(x) = p^2(x).$$

This non-linear equation allows us to develop an approximation scheme in powers of \hbar . Assuming \hbar is small, we expand:

$$S(x) = S_0(x) + \hbar S_1(x) + \hbar^2 S_2(x) + \mathcal{O}(\hbar^3).$$

Substituting this into the nonlinear equation and sorting terms by powers of \hbar , we find:

$$(S_0'(x))^2 - p^2(x) + \hbar (2S_0'S_1' - iS_0'') + \mathcal{O}(\hbar^2) = 0.$$

The leading order equation:

$$(S_0'(x))^2 - p^2(x) = 0,$$

gives:

$$S_0(x) = \pm \int_{x_0}^x p(x')dx'.$$

The next order equation:

$$2S_0'S_1' - iS_0'' = 0,$$

leads to:

$$S_1'(x) = \frac{i}{2} \frac{p'(x)}{p(x)}.$$

Integrating:

$$S_1(x) = \frac{i}{2} \ln p(x) + C',$$

where C' is a constant. Reconstructing the wavefunction:

$$\psi(x) \simeq \exp\left[\frac{i}{\hbar}S_0(x)\right] \exp\left[iS_1(x)\right] = \frac{A}{\sqrt{p(x)}} \exp\left(\pm\frac{i}{\hbar}\int_{x_0}^x p(x')dx'\right).$$

For the probability density:

$$\rho = \psi^* \psi = \frac{|A|^2}{p(x)} = \frac{|A|^2}{mv(x)},$$

where v(x) is the local classical velocity. The probability current:

$$J(x) = \rho \frac{1}{m} \frac{\partial S}{\partial x} = \frac{|A|^2}{m}.$$

General WKB solutions

We can now construct general solutions using the basic WKB solution for both classically allowed and forbidden regions.

For the classically allowed region (E - V(x) > 0), where $p^2(x) = \hbar^2 k^2(x)$ and k(x) > 0, the solution is a superposition of waves propagating in opposite directions:

$$\psi(x) = \frac{A}{\sqrt{k(x)}} \exp\left(i \int_{x_0}^x k(x') dx'\right) + \frac{B}{\sqrt{k(x)}} \exp\left(-i \int_{x_0}^x k(x') dx'\right).$$

For the classically forbidden region (E-V(x)<0), where $p^2(x)=-\hbar^2\kappa^2(x)$ and $\kappa(x)>0$, the solution becomes:

$$\psi(x) = \frac{C}{\sqrt{\kappa(x)}} \exp\left(\int_{x_0}^x \kappa(x') \, dx'\right) + \frac{D}{\sqrt{\kappa(x)}} \exp\left(-\int_{x_0}^x \kappa(x') \, dx'\right).$$

Validity of the approximation

While the semiclassical approximation is derived with \hbar as a small expansion parameter, it is important to understand the physical meaning of the approximation. Consider the differential equation:

$$(S_0')^2 - p^2(x) + \hbar \left(2S_0'S_1' - iS_0''\right) + \mathcal{O}\left(\hbar^2\right) = 0.$$

The $\mathcal{O}(\hbar)$ terms must be much smaller in magnitude than the $\mathcal{O}(1)$ terms. For example:

$$|\hbar S_0' S_1'| \ll |S_0'|^2$$
.

Simplifying and noting $|S'_0| = |p|$:

$$|\hbar S_1'| \ll |p|,$$

and from earlier, $|S_1'| \sim |p'/p|$, so:

$$\left| \hbar \frac{p'}{p} \right| \ll |p|.$$

Rewriting this condition:

$$\left|\frac{\hbar}{p}\right| \left|\frac{dp}{dx}\right| \ll |p| \Rightarrow \lambda \left|\frac{dp}{dx}\right| \ll |p|,$$

where $\lambda = h/p$ is the de Broglie wavelength. Alternatively:

$$\left|\hbar \frac{p'}{p^2}\right| \ll 1 \Rightarrow \left|\hbar \frac{d}{dx} \frac{1}{p}\right| \ll 1,$$

or equivalently:

$$\left| \frac{d\lambda}{dx} \right| \ll 1.$$

This implies the de Broglie wavelength must vary slowly. Multiplying by λ :

$$\left|\lambda \frac{d\lambda}{dx}\right| \ll \lambda,$$

so the variation of λ over a distance λ must be much smaller than λ .

It is not hard to figure out what the above constraints tell us about the rate of change of the potential.

To relate this to the potential, differentiate $p^2(x) = 2m(E - V(x))$:

$$|pp'| = m \left| \frac{dV}{dx} \right| \Rightarrow \left| \frac{dV}{dx} \right| = \frac{1}{m} |pp'|.$$

Multiplying by $\lambda = h/p$, we find:

$$\left|\lambda(x)\frac{dV}{dx}\right| = \frac{2\pi\hbar}{m}\left|p'\right| \ll \frac{p^2}{m},$$

and hence:

$$\left|\lambda(x)\frac{dV}{dx}\right| \ll \frac{p^2(x)}{2m}.$$

This shows that the change in the potential over a distance equal to the de Broglie wavelength must be much smaller than the kinetic energy. This is the precise meaning of a slowly changing potential in the WKB approximation.

The slow variation conditions fail near **turning points**. At turning points, the local momentum becomes zero, and the de Broglie wavelength becomes infinite. Near a turning point x = a, where $V(x) - E \simeq g(x - a)$, we approximate:

$$V(x) - E \simeq g(x - a), \quad g > 0, \quad x \sim a.$$

The local momentum in the allowed region x < a is:

$$p^{2}(x) = 2m(E - V(x)) \simeq 2mg(a - x).$$

The de Broglie wavelength is then:

$$\lambda(x) = \frac{2\pi\hbar}{p} \simeq \frac{2\pi\hbar}{\sqrt{2mg}\sqrt{a-x}}.$$

Taking the derivative:

$$\left| \frac{d\lambda}{dx} \right| \simeq \frac{\pi\hbar}{\sqrt{2mg}} \frac{1}{(a-x)^{3/2}}.$$

As $x \to a$, the right-hand side diverges, violating the condition $\left|\frac{d\lambda}{dx}\right| \ll 1$. This shows that the WKB solutions are valid only away from turning points.

Near a turning point, such as x = a, a "connection formula" is needed to relate WKB solutions far to the left and far to the right of the turning point.

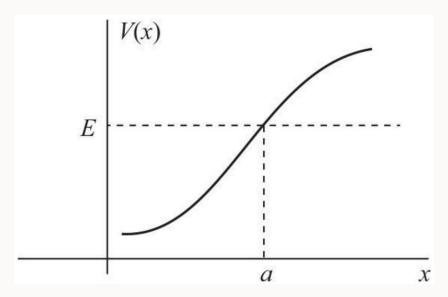


Figure 1: A potential V(x) with a turning point at x = a for a state with energy E.

Example: Linear Potential and the Airy Equation

We studied the linear potential in section 6.7, solving the time-independent Schrödinger equation in momentum space using the Fourier transform. The solutions were expressed in terms of the Airy function. Here, we revisit the same linear potential:

$$V(x) = gx, \quad g > 0.$$

This analysis will be in position space. Since the potential is unbounded below, energy eigenstates are not normalizable. In section 6.7, normalization was achieved by introducing a hard wall at x = 0. Assume the energy E is such that the classical turning point occurs at x = a:

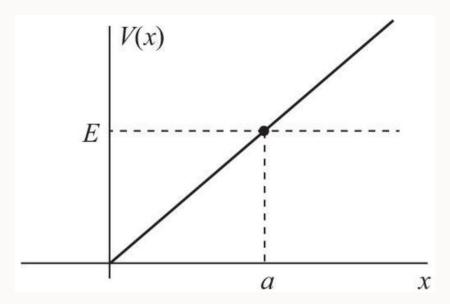


Figure 2: The linear potential V(x) = gx and an energy eigenstate with energy E, where the turning point occurs at x = a.

The turning point is defined as:

$$V(x) - E = g(x - a), \quad a = \frac{E}{g}.$$

The classically allowed region is x < a, while the classically forbidden region is x > a. The Schrödinger equation becomes:

$$-\frac{\hbar^2}{2m}\psi'' + g(x-a)\psi = 0.$$

To remove units from this equation, let $x = L\tilde{u}$, where \tilde{u} is unit-free, and L has units of length:

$$-\frac{\hbar^2}{2m}\frac{1}{gL^3}\frac{d^2\psi}{d\tilde{u}^2} + \left(\tilde{u} - \frac{a}{L}\right)\psi = 0.$$

Set:

$$L^{3} = \frac{\hbar^{2}}{2mq}, \quad u = \tilde{u} - \frac{a}{L} = \frac{1}{L}(x - a).$$

With this substitution, the differential equation simplifies to the Airy equation:

$$\frac{d^2\psi}{du^2} = u\psi.$$

The relevant solution $\psi(u)$ is the Airy function $\mathrm{Ai}(u)$, which represents the energy eigenstates of the linear potential. Using the relation between u, x, a, and E, we express the solution as:

$$\psi(u) = \operatorname{Ai}(u) = \operatorname{Ai}\left(\tilde{u} - \frac{a}{L}\right) = \operatorname{Ai}\left(\frac{1}{L}\left(x - \frac{E}{g}\right)\right).$$

These relations express the solution Ai(u) in terms of the physical variables. In the absence of a hard wall, all energies are allowed.

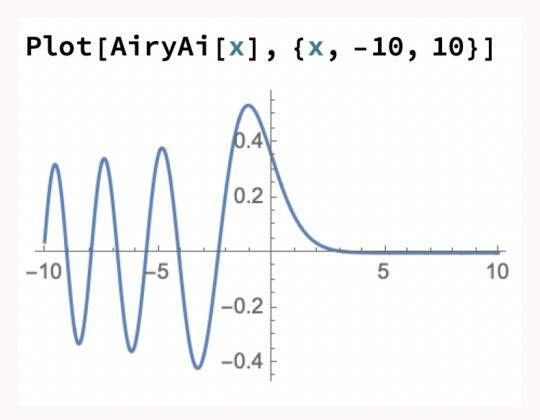


Figure 3: The Airy function Ai(x) as a function of x.

Example: WKB Solutions of the Airy Equation $\psi'' = u\psi$

We reduced the problem of finding energy eigenstates for the linear potential to solving the Airy differential equation:

$$\psi''(u) = u\psi.$$

The WKB solutions for this equation are valid for $u \gg 1$ (deep in the forbidden region) and $u \ll -1$ (deep in the allowed region). These solutions are not valid near the turning point at u = 0.

For $u \gg 1$, set $\kappa = u^{1/2}$. Following the WKB approach, the solution is:

$$\psi(u) = \frac{C}{u^{1/4}} \exp\left[-\int_{u_0}^u \sqrt{u'} \, du'\right] + \frac{D}{u^{1/4}} \exp\left[\int_{u_0}^u \sqrt{u'} \, du'\right].$$

Here, u_0 is the lower limit of integration, chosen arbitrarily as long as $u_0 < u$. For convenience, we set $u_0 = 0$, giving:

$$\psi(u) = \frac{C}{u^{1/4}} \exp\left[-\int_0^u \sqrt{u'} \, du'\right] + \frac{D}{u^{1/4}} \exp\left[\int_0^u \sqrt{u'} \, du'\right].$$

Evaluating the integrals:

$$\psi(u) = \frac{C}{u^{1/4}} \exp\left[-\frac{2}{3}u^{3/2}\right] + \frac{D}{u^{1/4}} \exp\left[\frac{2}{3}u^{3/2}\right], \quad u \gg 1.$$

For $u \ll -1$, set $k = \sqrt{-u} = |u|^{1/2}$. Following the WKB approach:

$$\psi(u) = \frac{A}{|u|^{1/4}} \exp\left[i \int_{u}^{0} \sqrt{-u'} \, du'\right] + \frac{B}{|u|^{1/4}} \exp\left[-i \int_{u}^{0} \sqrt{-u'} \, du'\right].$$

Here, the integration limits are chosen such that the lower limit is smaller than the upper limit, inducing a minus sign in the phases. Evaluating the integrals:

$$\psi(u) = \frac{A}{|u|^{1/4}} \exp\left[i\frac{2}{3}|u|^{3/2}\right] + \frac{B}{|u|^{1/4}} \exp\left[-i\frac{2}{3}|u|^{3/2}\right], \quad u \ll -1.$$

The solutions for $u \gg 1$ and $u \ll -1$ are given by:

$$\psi(u) = \frac{C}{u^{1/4}} \exp\left[-\frac{2}{3}u^{3/2}\right] + \frac{D}{u^{1/4}} \exp\left[\frac{2}{3}u^{3/2}\right], \quad u \gg 1,$$

$$\psi(u) = \frac{A}{|u|^{1/4}} \exp\left[i\frac{2}{3}|u|^{3/2}\right] + \frac{B}{|u|^{1/4}} \exp\left[-i\frac{2}{3}|u|^{3/2}\right], \quad u \ll -1.$$

If these solutions represent a single solution of the Airy equation, there must be a relation between the coefficients A, B, C, and D. This connection will be addressed in the section 4.

Approximation Validity

Our WKB solutions are approximate solutions of the Airy equation. Consider one approximate solution:

$$\psi_a(u) = \frac{1}{u^{1/4}} \exp\left(-\frac{2}{3}u^{3/2}\right).$$

Taking two derivatives, it satisfies:

$$\frac{d^2\psi_a}{du^2} = \left(u + \frac{5}{16}\frac{1}{u^2}\right)\psi_a.$$

This differs from the Airy equation by a u^{-2} term, which becomes negligible for $u \gg 1$.

3 Using Connection Formulae

We consider the connection formulae for solutions near a turning point x = a, which separates a classically allowed region on the left and a classically forbidden region on the right.

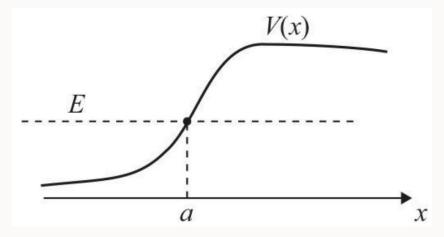


Figure 4: A potential V(x) with a turning point at x = a. Connection formulae relate WKB solutions far to the left and far to the right of x = a.

The WKB solutions to the right are exponentials that grow or decay, while the WKB solutions to the left are oscillatory functions. These solutions connect via the following

relations:

$$\frac{2}{\sqrt{k(x)}}\cos\left(\int_{x}^{a}k(x')\,dx' - \frac{\pi}{4}\right) \Longleftrightarrow \frac{1}{\sqrt{\kappa(x)}}\exp\left(-\int_{a}^{x}\kappa(x')\,dx'\right),\tag{15}$$

$$-\frac{1}{\sqrt{k(x)}}\sin\left(\int_{x}^{a}k(x')\,dx'-\frac{\pi}{4}\right) \Longrightarrow \frac{1}{\sqrt{\kappa(x)}}\exp\left(\int_{a}^{x}\kappa(x')\,dx'\right). \tag{16}$$

The arrows in the above relations are significant:

- 1. In (15), the arrow indicates that if the solution is a decaying exponential to the right of x = a, the corresponding solution to the left of x = a is the phase-shifted cosine function that the arrow points to.
- 2. In (16), if the solution to the left of x = a is of the oscillatory type shown, the growing exponential part to the right of x = a is determined. The decaying exponential part cannot be reliably deduced.

Importantly, these connection formulae must not be applied in the direction that goes against the arrows.

Example: Quantization Condition for a Potential with a Wall

We now attempt to find the quantization condition that governs the energies of bound states in a potential V(x) that includes a hard wall at x=0. Assume V(x) increases monotonically and without bound, as shown in the following figure.

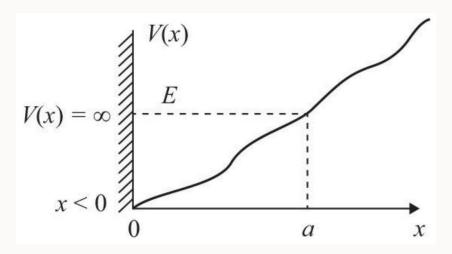


Figure 5: A monotonically increasing potential with a hard wall at x = 0. For an energy eigenstate of energy E, the turning point is at x = a.

Let E denote the energy of the eigenstate. The energy and potential V(x) determine the turning point x=a. For x>a, the solution must be a decaying exponential since the

forbidden region extends to $x \to \infty$. The wave function for x > a is of the type on the right-hand side of the connection formula (15). This accurately determines the wave function for $x \ll a$ to be:

$$\psi(x) = \frac{1}{\sqrt{k(x)}} \cos\left(\int_x^a k(x') dx' - \frac{\pi}{4}\right), \quad 0 \le x \ll a.$$

The wave function must vanish at the hard wall at x=0. The condition $\psi(0)=0$ requires:

$$\cos \Delta = 0$$
, with $\Delta \equiv \int_0^a k(x') dx' - \frac{\pi}{4}$.

This is satisfied when:

$$\int_0^a k(x') \, dx' - \frac{\pi}{4} = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z}.$$

The quantization condition becomes:

$$\int_0^a k(x') \, dx' = \left(n + \frac{3}{4}\right) \pi, \quad n = 0, 1, 2, \dots$$
 (17)

Negative integers are excluded as the left-hand side is manifestly positive. Using k(x) in terms of E and V(x):

$$\int_0^a \sqrt{\frac{2m}{\hbar^2} (E - V(x'))} \, dx' = \left(n + \frac{3}{4}\right) \pi, \quad n = 0, 1, 2, \dots$$

In special cases, a can be explicitly determined in terms of E, allowing analytical integration. More generally, numerical methods can evaluate the integral as a function of E, selecting energies that satisfy the quantized values.

Rewriting the wave function using $\int_x^a = \int_0^a - \int_0^x$:

$$\psi(x) = \frac{1}{\sqrt{k(x)}} \cos\left(\int_0^a k(x') dx' - \frac{\pi}{4} - \int_0^x k(x') dx'\right)$$
$$= \frac{1}{\sqrt{k(x)}} \cos\left(\Delta - \int_0^x k(x') dx'\right)$$
$$= \frac{1}{\sqrt{k(x)}} \sin\Delta\sin\left(\int_0^x k(x') dx'\right),$$

where we expanded the cosine of a sum and used $\cos \Delta = 0$. This form makes $\psi(x=0) = 0$ explicit.

For potentials with two turning points, a and b (a < b), as shown in the following figure, the quantization condition becomes:

$$\int_{a}^{b} k(x') dx' = \left(n + \frac{1}{2}\right) \pi, \quad n = 0, 1, 2, \dots$$

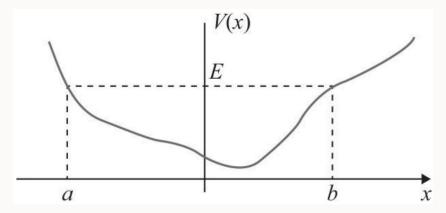


Figure 6: A potential for which a particle with energy E encounters turning points at x=a and x=b.

4 Connection formulae

Consider a general potential V(x) and focus on the region around the turning point x=a. Near x=a, the potential is approximately linear, and V(x)-E vanishes at x=a. Thus, we have:

$$V(x) - E \simeq g(x - a), \quad g > 0.$$

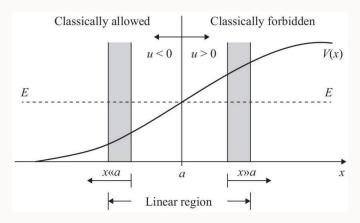


Figure 7: A turning point x = a of a potential V(x) that is approximately linear near x = a. The shaded regions indicate where V(x) is approximately linear, and WKB expressions are valid.

The WKB basic solutions far to the right (R) of the turning point are:

$$\psi_R(x) = \frac{C}{\sqrt{\kappa(x)}} \exp\left(-\int_a^x \kappa(x') \, dx'\right) + \frac{D}{\sqrt{\kappa(x)}} \exp\left(\int_a^x \kappa(x') \, dx'\right), \quad x \gg a.$$

This solution was evaluated under the assumption of a strictly linear potential. In the region where $x \gg a$ and V(x) is approximately linear, we use the result:

$$\psi_R(u) = \frac{C}{u^{1/4}} \exp\left(-\frac{2}{3}u^{3/2}\right) + \frac{D}{u^{1/4}} \exp\left(\frac{2}{3}u^{3/2}\right), \quad u \gg 1,$$

where $u = \frac{1}{L}(x - a)$, with u = 0 at the turning point.

The WKB solutions far to the left of x=a are written using sines and cosines, with a convenient $\pi/4$ phase shift:

$$\psi_L(x) = \frac{A}{\sqrt{k(x)}} \cos\left(\int_x^a k(x') dx' - \frac{\pi}{4}\right) + \frac{B}{\sqrt{k(x)}} \sin\left(\int_x^a k(x') dx' - \frac{\pi}{4}\right), \quad x \ll a.$$

Using the linear potential solution, the WKB result far to the left becomes:

$$\psi_L(u) = \frac{A}{|u|^{1/4}} \cos\left[\frac{2}{3}|u|^{3/2} - \frac{\pi}{4}\right] + \frac{B}{|u|^{1/4}} \sin\left[\frac{2}{3}|u|^{3/2} - \frac{\pi}{4}\right], \quad u \ll -1.$$

From the asymptotic expansions of Ai(u)

$$\operatorname{Ai}(u) \simeq \frac{1}{2\sqrt{\pi}} \frac{1}{u^{1/4}} \exp\left(-\frac{2}{3}u^{3/2}\right), \quad u \gg 1,$$

$$\operatorname{Ai}(u) \simeq \frac{1}{\sqrt{\pi}} \frac{1}{|u|^{1/4}} \cos\left(\frac{2}{3}|u|^{3/2} - \frac{\pi}{4}\right), \quad u \ll -1,$$

we match the solutions:

$$\frac{1}{\sqrt{\pi}} \frac{1}{|u|^{1/4}} \cos\left(\frac{2}{3}|u|^{3/2} - \frac{\pi}{4}\right) \Longleftrightarrow \frac{1}{2\sqrt{\pi}} \frac{1}{u^{1/4}} \exp\left(-\frac{2}{3}u^{3/2}\right).$$

This relation matches C to A:

$$C = \frac{1}{2}A.$$

Similarly, from the asymptotic expansions of Bi(u), the matching solutions are:

$$-\frac{1}{\sqrt{\pi}} \frac{1}{|u|^{1/4}} \sin\left(\frac{2}{3}|u|^{3/2} - \frac{\pi}{4}\right) \Longleftrightarrow \frac{1}{\sqrt{\pi}} \frac{1}{u^{1/4}} \exp\left(\frac{2}{3}u^{3/2}\right).$$

This relation matches D to B:

$$D = -B$$
.

We now put it all together. Letting $A \to 2A$ and setting C = A, as well as D = -B, the WKB expressions match as follows:

The formula for $\psi_R(x)$, valid far into the forbidden region:

$$\psi_R(x) = \frac{A}{\sqrt{\kappa(x)}} \exp\left(-\int_a^x \kappa(x') \, dx'\right) - \frac{B}{\sqrt{\kappa(x)}} \exp\left(\int_a^x \kappa(x') \, dx'\right), \quad x \gg a.$$

The formula for $\psi_L(x)$, valid far into the allowed region:

$$\psi_L(x) = \frac{2A}{\sqrt{k(x)}} \cos\left(\int_x^a k(x') dx' - \frac{\pi}{4}\right) + \frac{B}{\sqrt{k(x)}} \sin\left(\int_x^a k(x') dx' - \frac{\pi}{4}\right), \quad x \ll a.$$

Up to the arrows in the connection conditions, the above equations represent the connection formulae. Note that:

- For A = 1 and B = 0, these become the relations anticipated in (15).
- For A=0 and B=-1, these correspond to the relations in (16).